

Chapterwise + Topicwise

PHYSICS

Previous

Questions with Video Solutions

✓ Aligned as per 11^{th} & 12^{th} NCERT Books ✓ Physics + Chemistry + Biology

NEET PREVIOUS YEAR QUESTIONS

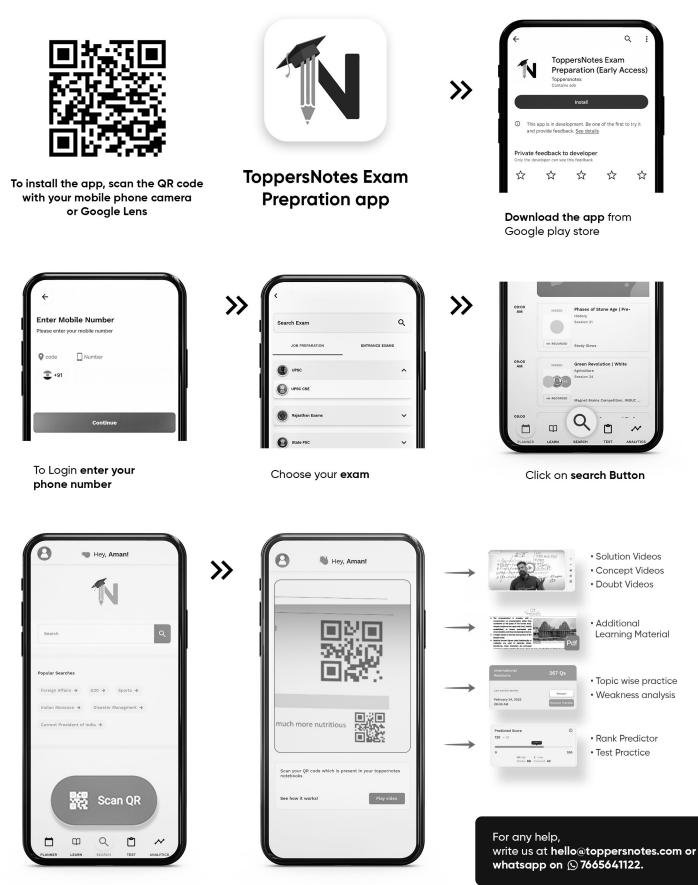
PHYSICS

	Class - 11 th	
S.N.	Chapter Name	P.N.
*	NEET (UG) – 2022 Physics Paper	1
1.	Unit and Measurements	9
	The International System of Units	
	Accuracy, Precision of Instruments and Errors in Measurement	
	Significant Figures	
	Dimensions of Physical Quantities	
	Dimensional Formulae and Dimensional Equations	
	Dimensional Analysis and Its Applications	
2.	Motion in a Straight Line	12
	Average Velocity and Average Speed	
	Instantaneous Velocity and Speeds	
	Acceleration	
	Kinematic Equations for Uniformly Accelerated Motion	
	Relative Velocity	
3.	Motion in a Plane	15
	Addition and Subtraction of Vectors Graphical Method	
	Resolution of Vectors	
	Vector Addition-Analytical Method	
	Motion in a Plane	
	Motion in a Plane with Constant Acceleration	
	Relative Velocity in Two Dimensions	
	Projectile Motion	
	Uniform Circular Motion	
4.	Laws of Motion	20
	Newton's Second Law of Motion	
	Newton's Third Law of Motion	
	Conservation of Momentum	
	Equilibrium of a Particle	
	Common Forces in Mechanics	
	Circular Motion	
	Solving Problems in Mechanics	
5.	Work, Energy and Power	27
	 Notions of Work and Kinetic Energy: The Work-Energy Theorem 	
	• Work	
	Work done by a Variable Force	

	The Concept of Potential Energy	
	The Conservation of Mechanical Energy	
	The Potential Energy of a Spring	
	Various Forms of Energy : The Law of Conservation of Energy	
	• Power	
	Collisions	
6.	Systems of Particles and Rotational Motion	33
	Centre of Mass	
	Motion of Centre of Mass	
	Vector Product of Two Vectors	
	 Angular Velocity and it's Relation with Linear Velocity 	
	Torque and Angular Momentum	
	Equilibrium of a Rigid Body	
	Moment of Inertia	
	Theorems of Perpendicular and Parallel Axes	
	Kinematics of Rotational Motion about a Fixed Axis	
	Dynamics of Rotational Motion about a Fixed Axis	
	Angular Momentum in case of Rotation about a Fixed Axis	
	Rolling Motion	
7.	Gravitation	42
	• Kepler's Laws	
	Universal Law of Gravitation	
	Acceleration due to Gravity of the Earth	
	Acceleration due to Gravity Below and Above the Surface of Earth	
	Gravitational Potential Energy	
	Escape Speed	
	Earth Satellite	
	• Energy of an Orbiting Satellite	
8.	Mechanical Properties of Solids	47
	Stress-Strain Curve	
	• Elastic Moduli	
9.	Mechanical Properties of Fluids	49
5.	Pressure	
	Streamline Flow	
	Bernoulli's Principle	
	 Viscosity 	
	Surface Tension	
10.		52
10.	Thermal Properties of Matter	52
	Measurement of Temperature Thermal Expansion	
	Thermal Expansion Specific Heat Conscitute	
	Specific Heat Capacity	
	Calorimetry Change of State	
	Change of State	

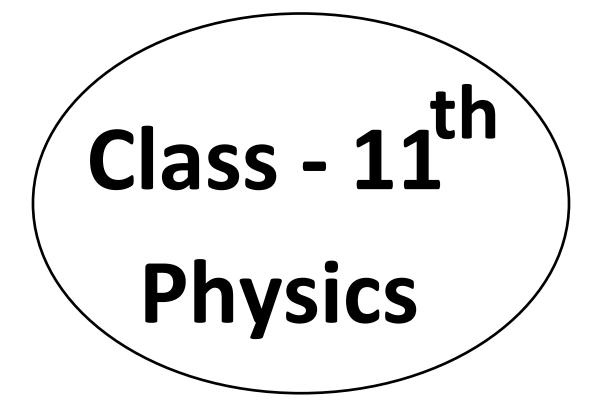
	Heat Transfer	
	Newton's Law of Cooling	
11.	Thermodynamics	57
	First Law of Thermodynamics	
	Specific Heat Capacity	
	Thermodynamic State Variables and Equation of State	
	Thermodynamic Processes	
	Heat Engines	
	Refrigerators and Heat Pumps	
	Reversible and Irreversible Processes	
	Carnot Engine	
12.	Kinetic Theory	62
	Behavior of Gases	
	Kinetic Theory of an Ideal Gas	
	Law of Equipartition of Energy	
	Specific Heat Capacity	
	Mean Free Path	
13.	Oscillations	64
	Simple Harmonic Motion	
	Simple Harmonic Motion and Uniform Circular Motion	
	Velocity and Acceleration in Simple Harmonic Motion	
	Force Law for Simple Harmonic Motion	
	Energy in Simple Harmonic Motion	
	Some Systems Executing Simple Harmonic Motion	
	Damped Simple Harmonic Motion	
	Forced Oscillations and Resonance	
14.	Waves	70
	Transverse and Longitudinal Waves	
	Displacement Relation in a Progressive Wave	
	The Speed of a Travelling Wave	
	The Principle of Superposition of Waves	
	Reflection of Waves	
	• Beats	
	Doppler Effect	

NEET PREVIOUS YEAR QUESTIONS

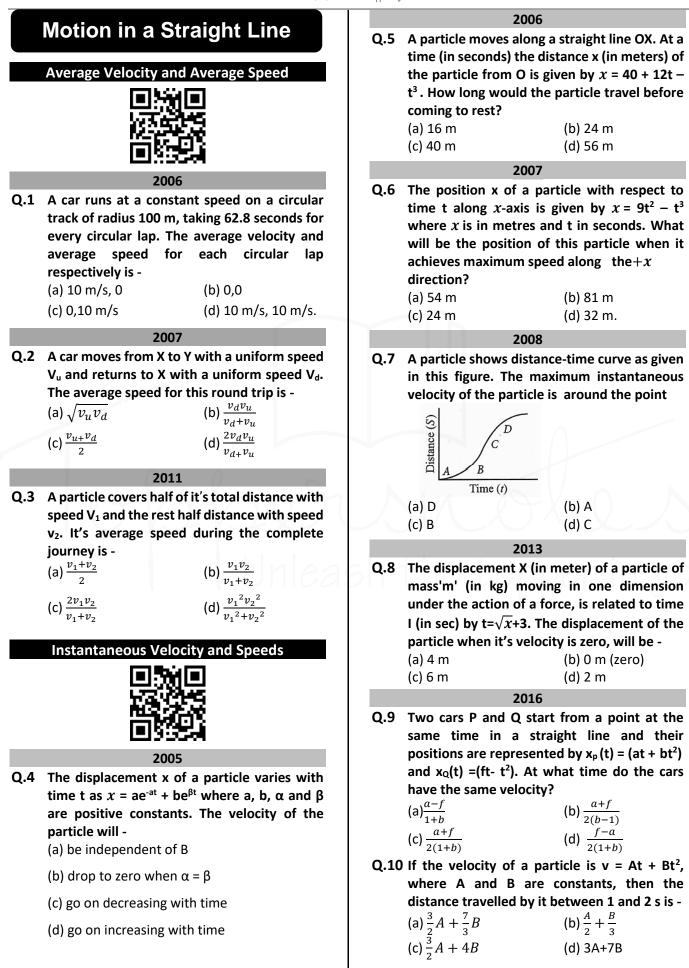

PHÝSICS

)
	Class - 12 th	
S.N.	Chapter Name	P.N.
1.	Electric Charges and Fields	76
	Coulomb's Law	
	Electric Field	
	Electric Flux	
	Electric Dipole	
	Dipole in a Uniform External Field	
	Continuous Charge Distribution	
	Gauss's Law	
	Applications of Gauss's Law	
2.	Electrostatic Potential and Capacitance	80
	Electrostatic Potential	
	Potential due to a Point Charge	
	Potential due to an Electric Dipole	
	 Potential due to a System of Charges 	
	Equipotential Surfaces	
	Potential Energy of a System of Charges Detential Energy in an Enternal Eicld	
	 Potential Energy in an External Field Electrostatics of Conductors 	
	Capacitors and Capacitance	
	The Parallel Plate Capacitor	
	Effect of Dielectric on Capacitance	
	Combination of Capacitors	
	Energy Stored in a Capacitor	
3.	Current Electricity	87
	Ohm's Law	
	 Drift of Electrons and the Origin of Resistivity 	
	Limitations of Ohm's Law	
	Resistivity of Various Materials	
	Temperature Dependence of Resistivity	
	Electrical Energy, Power	
	Combination of Resistors-Series and Parallel	
	Cells, EMF, Internal Resistance	
	Cells in Series and in Parallel	
	Kirchhoff's Rules	
	Wheatstone Bridge	
	Metre Bridge	
	Potentiometer	

4.	Moving Charges and Magnetism	97
	Magnetic Force	
	Motion in a Magnetic Field	
	Motion in Combined Electric and Magnetic Fields	
	Magnetic Field on the Axis of a Circular Current Loop	
	Ampere's Circuital Law	
	The Solenoid and the Toroid	
	Force between Two Parallel Currents, the Ampere	
	Torque on Current Loop, Magnetic Dipole	
	The Moving Coil Galvanometer	
5.	Magnetism and Matter	105
	The Bar Magnet	
	The Earth's Magnetism	
	 Magnetization and Magnetic Intensity 	
	Magnetic Properties of Materials	
	 Permanent Magnets and Electromagnets 	
6.	Electromagnetic Induction	108
	Magnetic Flux	
	Faraday's Law of Induction	
	Lenz's Law and Conservation of Energy	
	Motional Electromotive Force	
	Energy Consideration : A Quantitative Study	
	Eddy Currents	
	Inductance	
	AC Generator	
7.	Alternating Current	112
	AC Voltage Applied to a Resistor	
	AC Voltage Applied to an Inductor	
	AC Voltage Applied to a Capacitor	
	AC Voltage Applied to a Series LCR Circuit	
	Power in AC Circuit: The Power Factor	
	LC Oscillations	
	Transformers	
	RC/RL Circuits with DC Source	
8.	Electromagnetic Waves	116
	Displacement Current	
	Electromagnetic Waves	
	Electromagnetic Spectrum	
9.	Ray Optics And Optical Instruments	119
	Reflection of Light by Spherical Mirrors	
	Refraction	
	Total Internal Reflection	
	Refraction at Spherical Surfaces and by Lenses	


	Refraction through a Prism	
	 Some Natural Phenomena due to Sunlight 	
	Optical Instruments	
10.	Wave Optics	126
	Refraction and Reflection of Plane Waves using Huygens Principle	
	Coherent and Incoherent Addition of Waves	
	 Interference of Light Waves and Young's Experiment 	
	Diffraction	
	Polarisation	
12.	Dual Nature of Radiation and Matter	129
	Introduction	
	Experimental Study of Photoelectric Effect	
	 Einstein's Photoelectric Equation : Energy Quantum of Radiation 	
	Particle Nature of Light :Photon	
	Wave Nature of Matter	
13.	Atoms	136
	 Alpha-Particle Scattering and Rutherford's Nuclear Model of Atom 	
	Atomic Spectra	
	Bohr Model of the Hydrogen Atom	
	The Line Spectra of the Hydrogen Atom	
	• X-Rays	
14.	Nuclei	139
	Atomic Masses and Composition of Nucleus	
	Size of the Nucleus	
	 Mass – Energy and Nuclear Binding Energy 	
	Radioactivity	
	Nuclear Energy	
15.	Semiconductor Electronics :Materials, Devices and Simple Circuits	145
	 Classification of Metals, Conductors and Semiconductors 	
	Intrinsic Semiconductor	
	Extrinsic Semiconductor	
	• p-n Junction	
	Semiconductor Diode	
	 Application of Junction Diode as a Rectifier 	
	Special Purpose p-n Junction Diodes	
	Digital Electronics and Logic Gates	
	Junction Transistor	
	Solids	
*	NEET (UG) – 2022 Physics Answer Key	155
*	Class 11 th & Class 12 th Physics Answer Key	156

Dear Aspirant, Thank you for making the right decision by choosing ToppersNotes. To use the QR codes in the book, Please follow the below steps :-



Click on Scan QR

Choose the **QR from book**

Q.11 Motion of a particle is given by equation $s = (3t^2 + 7t^3 + 14t + 8)$ m.The value of acceleration of the particle at t = 1 sec. is -(a) 10 m/s² (b) 32 m/s² (c) 23 m/s² (d) 16 m/s²

2007

Q.12 A particle moving along x-axis has acceleration f, at time t, given by $f = f_0 \left[1 - \frac{t}{T} \right]$, where f_0 and T are constants. The particle at t = 0 has zero velocity. In the time interval between t = 0 and the instant when f= 0, the particle's velocity (v_x) is - (a) $\frac{1}{2} f_0 T^2$ (b) $f_0 T^2$

(a)
$$\frac{1}{2} f_0 T$$

(c) $\frac{1}{2} f_0 T$

(c) $f_0 T$

- Q.13 A particle moves a distance x in time according to equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to
 - (a) $(velocity)^{3/2}$
 - (b) (distance)²
 - (c) (distance)⁻² (d) (velocity)^{2/3}

2012

Q.14 The motion of a particle along a straight line is described by equation $x = 8 + 12t - t^3$ where x is in metre and t in second. The retardation of the particle when it's velocity becomes zero is -

(c) 6 m s ⁻²	(d) 12 m s ⁻²
(a) 24 m s⁻²	(b) zero

2015

Q.15 A particle of unit mass undergoes onedimensional motion such that it's velocity varies according to $v(x) = \beta x^{-2n}$, where β and *n* are constants and *x* is the position of the particle. The acceleration of the particle as a function of *x*, is given by -

(a) $-2\beta^2 x^{-2n+1}$

- (b) $-2n\beta^2 e^{-4n+1}$
- (c) $-2n\beta^2 x^{-2n-1}$
- (d) -2nβ² x⁻⁴ⁿ⁻¹

Kinematic Equations for Uniformly Accelerated Motion

1998

- Q.16 A car moving with a speed of 40 km/h can be stopped by applying brakes after at least 2 m. If the same car is moving with a speed of 80 km/h. what is the minimum stopping distance?
 - (a) 4 m (b) 6 m
 - (c) 8 m (d) 2 m

2001

- Q.17 A particle is thrown vertically upward. Its velocity at half of the height is 10 m/s, then the maximum height attained by it. (g = 10 m/s^2) (a) 8 m (b) 20 m
 - (d) 16 m.

2003

Q.18 A man throws balls with the same speed vertically upwards one after the other at an interval of 2 seconds. What should be the speed of the throw so that more than two balls are in the sky at any time?

- (a) More than 19.6 m/s
- (b) At least 9.8 m/s

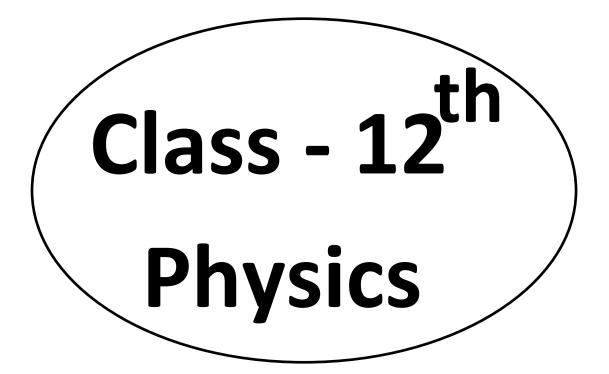
(c) 10 m

- (c) Any speed less than 19.6 m/s
- (d) Only with speed 19.6 m/s
- Q.19 If a ball is thrown vertically upwards with speed u, the distance covered during the last t seconds of it's ascent is -

(a) <i>ut</i>	(b) $\frac{1}{2}gt^2$
(c) $ut - \frac{1}{2}gt$	(d) $(u + gt)t$

2005 Q.20 A ball is thrown vertically upward. It has a speed of 10 m/sec when it has reached one half of it's maximum height. How high does the ball rise? (Take g = 10 m/s²) I (a) 10 m (b) 5 m

	2000	
(c) 15 m		(d) 20 m
1-7 -		(- <i>)</i> -


2006 Q.21 Two bodies A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16 m and 25 m, respectively. The ratio of the time taken by them to reach the ground is -(a) 4/5 (b) 5/4

(d) 5/12

(c) 12/5

		2008	-	The height of the tower i
Q.22 [·]	The distance tra	avelled by a particle starting	$(g = 10 \text{ m/s}^2)$	
1	from rest and mo	oving with an acceleration $\frac{4}{3}$ m	(a) 360 m	(b) 340 m
	s^{-2} , in the third	5	(c) 320 m	(d) 300 m
	$(a)\frac{10}{3}m$	(b) $\frac{19}{2}m$	Relative	Velocity
	(c) 6 m	(d) 4 m		₩∎
	. ,	es in a straight line with a	1.33	
	-	ration. It changes it's velocity		
		20ms ⁻¹ . while passing through		
		n in t second. The value of t is		09
	(a) 12	(b) 9	Q.29 A bus is moving wit	
	(c) 10	(d) 1.8		A scooterist wishes t
		2009	-	n 100 s. If the bus is at
Q.24	A particle starts	it's motion from rest under		from the scooterist, wit
ł	the action of a c	onstant force. If the distance	what speed should	the scooterist chase the
		10 seconds is S_1 , and that	bus ?	
		rst 20 seconds is S ₂ , then -	(a) 40 m <i>s</i> ⁻¹	(b) 25 m s ⁻¹
	(a) $S_2 = 3S_1$	(b) $S_2 = 4S_1$	(c) 10 ms ⁻¹	(d) 20 m <i>s</i> ⁻¹
	(c) $S_2 = S_1$	(d) $S_2 = 2S_1$	20	017
		2010	Q.30 Preeti reached the	metro station and foun
		d from a high rise platform at		was not working. Sh
	-	from rest. After 6 seconds		onary escalator in time t_1
		hrown downwards from the	•	he remains stationary o
		with a speed v. The two balls		ator, then the escalato
		What is the value of v?		t_2 . The time taken by he
	(Take g = 10 m/s (a) 75 m/s	(b) 55 m/s		noving escalator will be - $t_1 t_2$
	(c) 40 m/s	(d) 60 m/s	(a) $\frac{t_1t_2}{t_2-t_1}$	(b) $\frac{t_1 t_2}{t_2 + t_1}$
	(6) 10 111/5		(c) $t_1 - t_2$	(d) $\frac{t_1 + t_2}{2}$
0.26		2011		2
-		at the top of a tower of 20 m r^{2}		
		tone. Assuming g = 10 m s ⁻² , n which it hits the ground is -		
	(a) 10.0 m/s	(b) 20.0 m/s		
	(c) 40.0 m/s	(d) 5.0 m/s		
	(-, - , -			
0 27	A stand falls for	2013		
		eely under gravity. It covers		
		and h₃ in the first 5 seconds, Ids and the next 5 seconds		
		e relation between $h_1 h_2$ and		
	h_3 is -			
	(a) $h_2 = 3h_1$ and	$h_{2} = 3h_{2}$		
	(b) $h_1 = h_2 = h_3$			
	(c) $h_1 = h_2 = h_3$ (c) $h_1 = 2h_2 = 3h$	-		
		3		
	1 N 1 110 110			
	(d) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$			
	(d) $h_1 = \frac{h_2}{3} = \frac{h_3}{5}$	2020		
	5 5			
Q.28	A ball is thrown	2020		

Current Electricity

Ohm's Law

2004

Q.1 A 6 volt battery is connected to the terminals of a three meter long wire of uniform thickness and resistance of 100 ohm. The difference of potential between two points on the wire separated by a distance of 50 cm will be -

(a) 2 volt	(b) 3 volt
(c) 1 volt	(d) 1.5 volt

- Q.2 The electric resistance of a certain wire of iron is R. If its length and radius are both doubled, then
 - (a) The resistance will be doubled and the specific resistance will be halved.
 - (b) The resistance will be halved and the specific resistance will remain unchanged.
 - (c) The resistance will be halved and the specific resistance will be doubled.
 - (d) The resistance and the specific resistance, will both remain unchanged.

2008

Q.3 A wire of a certain material is stretched slowly by ten percent. Its new resistance and specific resistance become respectively

- (a) both remain the same
- (b) 1.1 times, 1.1 times
- (c) 1.2 times, 1.1 times
- (d) 1.21 times, same

2013

- Q.4 A wire of resistance 4Ω is stretched to twice its original length. The resistance of stretched wire would be -
 - (a) 8Ω
 - (b) 16Ω
 - (c) 2Ω (d) 4Ω

2

2017

Q.5 The resistance of a wire is 'R' ohm. If it is melted and stretched to 'n' times its original length, its new resistance will be -

(a) $\frac{R}{n}$	(b) $n^2 R$
(c) $\frac{R}{n^2}$	(d) <i>nR</i>

Drift of Electrons and the Origin of Resistivity

2009 Q.6 The mean free path of electrons in a metal is 4 X 10⁻⁸ m. The electric field which can give on an average 2 eV energy to an electron in the metal will be in units V/m?

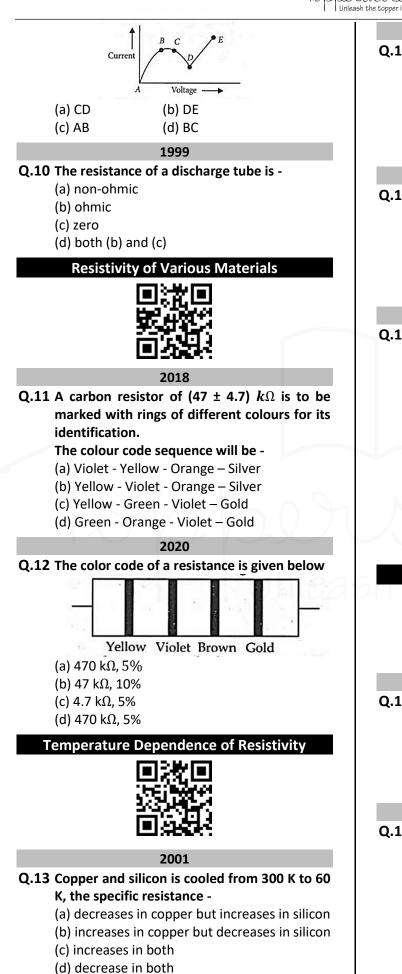
(a) 5×10^{-11} (b) 8×10^{-11}

- (c) 5×10^7
- (d) 8×10^7

2020

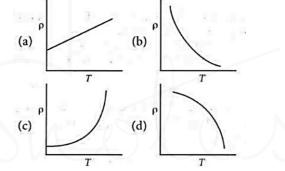
Q.7 A charged particle having drift velocity of 7.5 x $10^{-4} m s^{-1}$ in an electric field of $3 x 10^{-10} V m^{-1}$ has a mobility in $m^2 V^{-1} s^{-1}$ of (a) 2.25×10^{15} (b) 2.5×10^{6} (c) 2.5×10^{-6} (d) 2.25×10^{-15}

2021


Q.8 Column-I gives certain physical terms associated with flow of current through a metallic conductor. Column-II gives some mathematical relations involving electrical quantities. Match column-I and column-II with appropriate relations.

Column-l	Column-ll 🛛 🕓
(A) Drift velocity	(P) $\frac{m}{ne^2\rho}$
(B) Electrical Resistivity	(Q) nev _d
(C) Relaxation Period	(R) $\frac{eE}{m}\tau$
(D) Current Density	(S) $\frac{E}{I}$
(a) (A) - (R), (B) - (Q), (C)) - (S), (D) - (P)
(b) (A) - (R), (B) - (S), (C)	- (P), (D) - (Q)
(c) (A) - (R), (B)-(S), (C)-(Q), (D) - (P)
(d) (A) - (R), (B) - (P), (C)	-(S), (D)-(Q)

Q.9 From the graph between current (I) and voltage (V) is shown. Identify the portion corresponding to negative resistance


- Q.14 Specific resistance of a conductor increases with
 - (a) increase in temperature
 - (b) increase in cross-section areas
 - (c) increase in cross-section and decrease in length
 - (d) decrease in cross-section area

2020

- solids which have the Q.15 The negative temperature coefficient of resistance are (a) metals
 - (b) insulators only
 - (c) semiconductors only
 - (d) insulators and semiconductors

2020

Q.16 Which of the following graph represents the variation of resistivity (p) with temperature (T) for copper?

Q.17 A 5°C rise in temperature is observed in a conductor by passing a current. When the current is doubled the rise in temperature will be approximately

1998

(a) 20°C

(b) 16°C (c) 10°C (d) 12°C

2000

Q.18 Two bulbs are of (40 W, 200 V) and (100 W, 200V). Then correct relation for their resistances is

- (a) $R_{40} < R_{100}$
- (b) $R_{40} > R_{100}$
- (c) $R_{40} = R_{100}$
- (d) no relation can be predicted

Q.19 Fuse wire is a wire of -

- (a) high resistance and high melting point
- (b) high resistance and low melting point
- (c) low resistance and low melting point
- (d) low resistance and high melting point

2004

Q.20 In India electricity is supplied for domestic use at 220 V. It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R, the resistance of a 60 W bulb for use in USA will be -(a) R (b) 2R

(a) R	(b) 2R
(c) R/4	(d) R/2

2005

Q.21 A 5 ampere fuse wire can withstand a maximum power of 1 watt in the circuit. The resistance of the fuse wire is -

(a) 0.04 ohm	(b) 0.2 ohm
(c) 5 ohm	(d) 0.4 ohm

2008

Q.22 An electric kettle takes 4 A current at 220 V. How much time will it take to boil 1 kg of water from temperature 20°C ? The temperature of boiling water is 100°C. (a) 12.6 min (b) 4.2min

a) 12.6 min	(b) 4.2min
c) 6.3 min	(d) 8.4 min

(

2012

Q.23 If voltage across a bulb rated 220 volt, 100 watt drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is -

(a) 20%	(b) 2.5%
(c) 5%	(d) 10%

2014

Q.24 Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is 0.5Ω. The power loss in the wire is -

•	
(a) 19.2W	(b) 19.3kW
(c) 19.2 J	(d) 12.2kW

2016

Q.25 The charge flowing through a resistance R varies with time t as $Q = at - bt^2$, where a and b are positive constants. The total heat produced in R is -

(a) $\frac{a^{3}R}{2b}$	(b) $\frac{a^{3}R}{b}$
(c) $\frac{a^3R}{6b}$	(d) $\frac{a^{3}R}{3b}$

2019

- Q.26 Which of the following acts as a circuit protection device?
 - (a) Fuse
 - (b) Conductor
 - (c) Inductor
 - (d) Switch

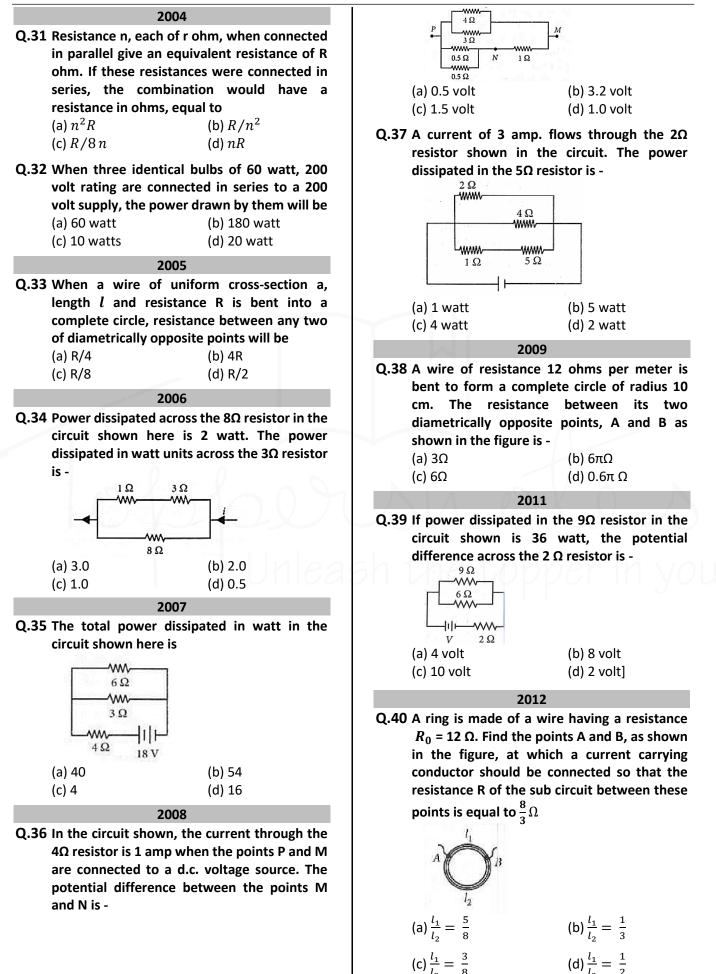
Combination of Resistors-Series and Parallel



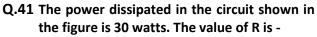
1998

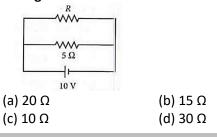
Q.27 Three equal resistors connected in series across a source of emf together dissipate 10 watt of power. What will be the power dissipated in watt if the same resistors are connected in parallel across the same source of emf?

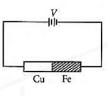
	1000	
(c) 10		(d) 90
(a) 30		(b) $\frac{10}{3}$

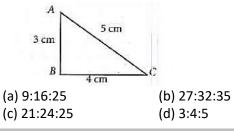

Q.28 The current in the given circuit is -

- 2003
- Q.29 Two 220 volt, 100 watt bulbs are connected first in series and then in parallel. Each time the combination is connected to a 220 volt a.c. supply line. The power drawn by the combination in each case respectively will be (a) 50 watt, 100 watt
 - (b) 100 watt, 50 watt
 - (c) 200 watt, 150 watt
 - (c) 200 wall, 150 wall
 - (d) 50 watt, 200 watt
- Q.30 An electric kettle has two heating coils. When one of the coils is connected to an a.c. source, the water in the kettle boils in 10 minutes. When the other coil is used the water boils in 40 minutes. If both the coils are connected in parallel, the time taken by the same quantity of water to boil will be -


(a) 8 minutes	(b) 4 minutes
(c) 25 minutes	(d) 15 minutes




(d) $\frac{l_1}{l} = \frac{1}{2}$


Q.42 Two rods are joined end to end, as shown. Both have a cross-sectional area of $0.01cm^2$. Each is 1 meter long. One rod is of copper with a resistivity of 1.7×10^{-6} ohm-centimeter, the other is of iron with a resistivity of 10^{-5} ohm-centimeter. How much voltage is required to produce a current of 1 ampere in the rods?

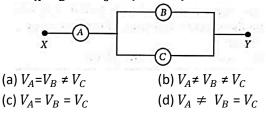
- (a) 0.00145 V (c) 1.7 x 10⁻⁶ V
- Q.43 A 12 cm wire is given a shape of a right angled triangle ABC having sides 3 cm, 4 cm and 5 cm as shown in the figure. The resistance between two ends (AB, BC, CA) of the respective sides are measured one by one by a mustimeter. The resistances will be in the ratio of -

(b) 0.0145 V

(d) 0.117 V

2015

Q.44 Two metal wires of identical dimensions are connected in series. If σ_1 and σ_2 are the conductivities of the metal wires respectively, the effective conductivity of the combination is -

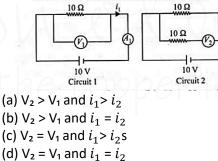

(a) $\frac{\sigma_1 + \sigma_2}{\sigma_1 \sigma_2}$	(b) $\frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$
(c) $\frac{2\sigma_1\sigma_2}{\sigma_1+\sigma_2}$	(d) $\frac{\sigma_1 + \sigma_2}{2\sigma_1 \sigma_2}$

Q.45 A circuit contains an ammeter, a battery of 30V and a resistance 40.8 ohm all connected in series. If the ammeter has a coil of

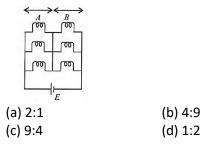
resistance 480 ohm and a shunt of 20 ohm, the reading in the ammeter will be -

(a) 2 A	(b) 1 A
(c) 0.5 A	(d) 0.25 A

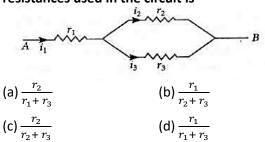
Q.46 A, B and C are voltmeters of resistance R, 1.5R and 3R respectively as shown in the figure. When some potential difference is applied between X and Y, the voltmeter readings are V_A , V_B and V_C respectively. Then



Q.47 A filament bulb (500 *W*, 100 *V*) is to be used in a 230 *V* main supply. When a resistance *R* is connected in series, it works perfectly and the bulb consumes 500 *W*. The value of R is -


a) 230 Ω	(b) 46 Ω
c) 26 Ω	(d) 13 Ω

Q.48 In the circuits shown below, the readings of the voltmeters and the ammeters will be -


Q.49 Six similar bulbs are connected as shown in the figure with a DC source of emf E, and zero internal resistance. The ratio of power consumption by the bulbs when (i) all are glowing and (ii) in the situation when two from section A and one from section B are glowing, will be -

Q.50 Three resistors having resistances r_1, r_2 and r_3 are connected as shown in the given circuit. The ratio $\frac{i_3}{i_1}$ of currents in terms of resistances used in the circuit is -

Q.51 The effective resistance of a parallel connection that consists of four wires of equal length, equal area of cross-section and same material is 0.25Ω . What will be the effective resistance if they are connected in series?

(a) 4Ω	(b) 0.25Ω
(c) 0.5Ω	(d) 1Ω

Cells, EMF, Internal Resistance

Q.52 The internal resistance of a cell of emf 2V is 0.1 Ω It is connected to a resistance of 3.9 Ω . The voltage across the cell will be -

c) 0.5 V	(d) 2 V
a) 1.95 V	(b) 1.9 V

2000

Q.53 A car battery of emf 12 V and internal resistance 5 x $10^{-2}\Omega$, receives a current of 60 amp from external source, then terminal potential difference of battery is -(a) 12 (b) 9 V (c) 15 V (d) 20 V

2002

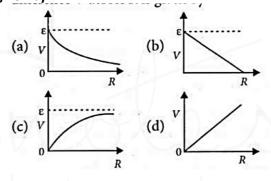
Q.54 For a cell terminal potential difference is 2.2V when circuit is open and reduces to 1.8V when cell is connected to a resistance of R = 5 Ω . Determine internal resistance of cell (r). (a) 10/9 Ω (b) 9/10 Ω (c) 11/9 Ω (d) 5/9 Ω

2009

Q.55 A student measures the terminal potential difference (V) of a cell (of emf and internal

resistance r) as a function of the current (1) flowing through it. The slope, and intercept, of the graph between V and I, then, respectively, equal

(a) -r and E	(b) r and -E
(c) -E and r	(d) E and -r


2011

Q.56 A current of 2A flows through a 2 Ω resistor when connected across a battery. The same battery supplies a current of 0.5A when connected across a 9Ω resistor. The internal resistance of the battery is -

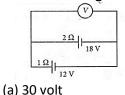
(a) 0.5 Ω	(b) 1/3 Ω
(c) 1/4 Ω	(d) 1 Ω

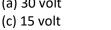
Q.57 A cell having an emf E and internal resistance r is connected across a variable external resistance R. As thse resistance R is increased, the plot of potential difference V across R is given by -

2012

2013			
Q.58 The internal resistance of a 2.1 V cell which			
gives a current of 0.2 A through a resistance			
of 10 Ω is			
(a) 0.8 Ω		(b) 1.0 Ω	
(c) 0.2 Ω		(d) 0.5 Ω	
:	2018	1	
Q.59 A set of n equal re connected in serie internal resistanc	es to e <i>R</i> .	a battery of em The current drav	f E and wn is <i>I</i> .
Now, the n resiston to the same batter	ery. 1	Then the current	drawn

)	(d) 9




Cells in Series and in Parallel

Q.60 Two batteries, one of emf 18 volts and internal resistance 2 Ω and the other of emf 12 volts and internal resistance 1 Ω , are connected as shown. The voltmeter V will record a reading of -

2005

2006

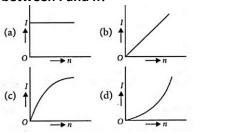
(b) 18 volt

(d) 14 volt

Q.61 Two cells, having the same e.m.f. are connected in series through an external resistance R. Cells have internal resistances r_1 and r_2 ($r_1 > r_2$) respectively. When the circuit is closed, the potential difference across the first cell is zero. The value of R is (a) $r_1 + r_2$ (b) $r_1 - r_2$

(c)
$$\frac{r_1 + r_2}{2}$$

(d) $\frac{r_1 - r_2}{2}$



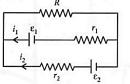
Q.62 Ten identical cells connected in series are needed to heat a wire of length one meter and radius 'r' by 10°C in time 't'. How many cells will be required to heat the wire of length two meter of the same radius by the same temperature in time 't'? (a) 20 (b) 30

(a) 20	(b) 30
(c) 40	(d) 10

2018

Q.63 A battery consists of a variable number n of identical cells (having internal resistance r each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

Kirchhoff's Rules


Q.64 Kirchhoff's first and second laws of electrical circuits are consequences of

2006

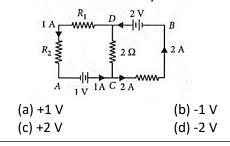
- (a) Conservation of energy and electric charge respectively
- (b) Conservation of energy
- (c) Conservation of electric charge and energy respectively
- (d) Conservation of electric charge.s

2009

Q.65 See the electrical circuit shown in this figure. Which of the following equations is a correct equation for it?

(a) $E_2 - i_2r_2 - E_1 - i_1r_1 = 0$ (b) $-E_2 - (i_1 + i_2)R + i_2r_2 = 0$ (c) $E_1 - (i_1 + i_2)R + i_1r_1 = 0$ (d) $E_1 - (i_1 + i_2)R - i_1r_1 = 0$

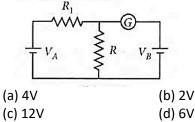
2010

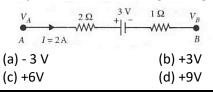

- (A)Kirchhoff's junction law follows from the conservation of charge.
- (B)Kirchhoff's loop law follows from the conservation of energy.

Which of the following is correct?

- (a) Both (A) and (B) are wrong.
- (b) (A) is correct and (B) is wrong.
- (c) (A) is wrong and (B) is correct.
- (d) Both (A) and (B) are correct.

2011

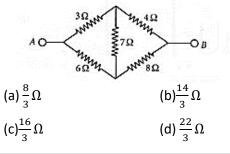

Q.67 In the circuit shown in the figure, if the potential at point A is taken to be zero, the potential at point B is -


2012

Q.68 In the circuit shown the cells A and B have negligible resistances. For $V_A = 12$ V, $R_1 = 500$ Ω and R = 100 Ω the galvanometer (G) shows no deflection. The value of V_B is

2016

Q.69 The potential difference $(V_A - V_B)$ between the points A and B in the given figure is



Wheatstone Bridge

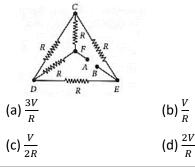
2000

Q.70 The net resistance of the circuit between A and B is -

2001

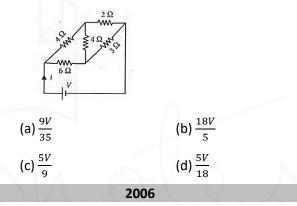
Q.71 The resistance of each arm of the Wheatstone's bridge is 10 ohm. A resistance of 10 ohm is connected in series with a galvanometer then the equivalent resistance across the battery will be -

2002		
(c) 20 ohm		(d) 40 ohm
(a) 10 ohm		(b) 15 ohm

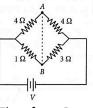

2003

Q.72 In a Wheatstone's bridge all the four arms have equal resistance R. If the resistance of the galvanometer arm is also R, the equivalent resistance of the combination as seen by the battery is -(a) R/4 (b) R/2

(c) R s (d) 2R


2004

Q.73 Five equal resistances each of resistance R are connected as shown in the figure. A battery of V volts is connected between A and B. The current flowing in AFCEB will be



2005

Q.74 For the network shown in the figure the value of the current *I* is -

Q.75 In the circuit shown, if a conducting wire is connected between points A and B, the current in this wire will -

- (a) Flow from B to A
- (b) Flow form A to B
- (c) Flow in the direction, which will be decided by the value of V
- (d) Be zero

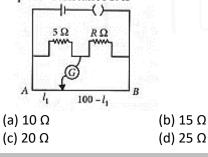
Q.76 Three resistances P, Q, R each of 2Ω and an unknown resistance S form the four arms of a Wheatstone bridge circuit. When a resistance of 6Ω is connected in parallel to S the bridge gets balanced. What is the value of S?

2007

(a) 3 Ω	(b) 6 Ω
(c) 1 Ω	(d) 2 Ω

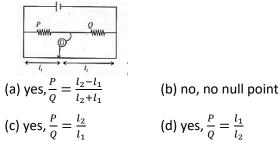
Q.77 The resistances of the four arms P, Q, R and S in a Wheatstone's bridge are 10 ohm, 30 ohm, 30 ohm and 90 ohm, respectively. The e.m.f. and internal resistance of the cell are 7 volt and 5 ohm respectively. If the galvanometer resistance is 50 ohm, the current drawn from the cell will be -

(a) 0.1 A	(b) 2.0 A
(c) 1.0 A	(d) 0.2 A


1999

Q.78 In a metre bridge, the balancing length from the left end (standard resistance of one ohm is in the right gap) is found to be 20 cm. The value of the unknown resistance is (a) 0.8Ω (b) 0.5Ω

(c) 0.4 Ω	(d) 0.25 Ω
N - 7	(-)


2014

Q.79 The resistances in the two arms of the meter bridge are 5 Ω and R Ω respectively. When the resistance R is shunted with an equal resistance, the new balance point is at 1.6 l_1 . The resistance is -

2019

Q.80 The metre bridge shown is in balance position with $\frac{P}{Q} = \frac{l_1}{l_2}$. If we now interchange the positions of galvanometer and cell, will the bridge work? If yes, what will be balanced condition?

2020

Q.81 A resistance wire connected in the left gap of a metre bridge balances a 10Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3:2. If the length of the resistance wire is 1.5 m, then the length of 1Ω of the resistance wire is -

> (a) 1.0 x 10⁻² m (c) 1.5 x 10⁻¹ m

(b) 1.0×10^{-1} m (d) 1.5×10^{-2} m

Q.82 A potentiometer consists of a wire of length 4 m and resistance 10Ω. It is connected to a cell of emf, 2V. The potential difference per unit length of the wire will be -

1999

0	
(a) 5 V/m	(b) 2 V/m
(c) 0.5 V/m	(d) 10 V/m

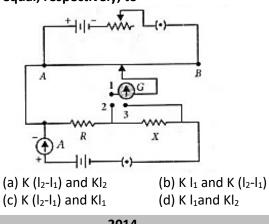
2000

- Q.83 The potentiometer is best for measuring voltage, as
 - (a) it has a sensitive galvanometer and gives null deflection
 - (b) it has wire of high resistance
 - (c) it measures p.d. like in closed circuit
 - (d) it measures p.d. like in open circuit.

2001

- Q.84 If specific resistance of a potentiometer wire is $10^{-7}\Omega m$ and current flow through it is 0.1 amp. cross-sectional area of wire is $10^{-6}m^2$ then potential gradient will be (a) 10^{-2} volt/m (b) 10^{-4} volt/m
 - (c) 10⁻⁶ volt/m (d) 10⁻⁸ volt/m

2008


Q.85 A cell can be balanced against 110 cm and 100 cm of potentiometer wire, respectively with and without being short circuited through a resistance of 10Ω Its internal resistance is (a) 2.0 ohm (b) Zero

2010

Q.86 A potentiometer circuit set up as shown. The potential gradient, across the potentiometer wire, is k volt/cm and the ammeter, present in the circuit, reads 1.0 A when two way key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and

3, is plugged in, are found to be at lengths l_1 cm and l_2 cm respectively. The magnitudes of the resistors R and X, in ohms, are then, equal, respectively, to

2014

- Q.87 A potentiometer circuit has been set up for finding the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and negligible internal resistance. The а potentiometer wire itself is 4 m long. When the resistance R connected across the given cell, has values of -
 - (i) Infinity
 - (ii) 9.5Ω

the balancing lengths on the potentiometer wire are found to be 3 m and 2.85 m. respectively. The value of internal resistance of the cell is -

(b) 0.95 Ω

(d) 0.75 Ω

(a) 0.25Ω	
(c) 0.5 Ω	

2015

Q.88 A potentiometer wire of length L and a resistance r are connected in series with a battery of emf E_0 and a resistance r_1 . An unknown emf E is balanced at a length l of the potentiometer wire. The em.f. E will be given bv -

(a)
$$\frac{E_0 l}{L}$$
 (b) $\frac{LE_0 r}{(r+r_1)l}$
(c) $\frac{LE_0 r}{lr_1}$ (d) $\frac{E_0 r}{(r+r_1)}$

- Q.89 A potentiometer wire has length 4 m and resistance 8Ω . The resistance that must be connected in series with the wire and an accumulator of e.mf. 2V, So as to get a potential gradient 1 mV per cm on the wire is (a) 44 Ω
 - (b) 48 Ω
 - (c) 32 Ω
 - (d) 40 Ω

2016

Q.90 A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is -

2017

- Q.91 A potentiometer is an accurate and versatile device to make electrical measurements of EMF because the method involves -
 - (a) potential gradients
 - (b) a condition of no current flow through the galvanometer
 - (c) a combination of cells, galvanometer and resistances
 - (d) cells

2021

Q.92 In a potentiometer circuit a cell of EMF 1.5V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell then at what length of the wire, the balance point occurs?

> (a) 62 cm (c) 21.6 cm

(b) 60 cm (d) 64 cm