

Uttar Pradesh Public Service Commission, Prayagraj

General Studies

Paper 1 – Volume 5

Geography of World

UP - PSC

G.S. PAPER – 1 VOLUME – 5

GEOGRAPHY OF WORLD

S.No.	Chapter Name	Page No.
1.	Universe and the Solar System	1
	Origin of the Universe	
	Components of the Universe	
	Eclipse	
2.	Earth	14
	Geographical Coordinates: Latitudes and Longitudes	
	Motions of Earth	
3.	Internal Structure of Earth	20
	Source of Study Interior of Earth	
	Divison of Earth's Layers	
4.	Minerals and Rocks	24
	Minerals	
	Rocks	
5.	Geomorphological Theories	30
	Plate Tectonic Theory	
6.	Geomorphic Processes	34
	Classification of Exogenic Movements	
	Volcanism	
	Earthquakes	
7.	Major Landforms	53
	Mountains	
	Plateaus	
	Plains	
8.	Minor Landforms	64
	Desert Landforms	
	Glacial Landforms	
	Volcanic Landforms	
9.	Climatology	77
	Atmosphere	
	Structure of Atmosphere	
	Thermal Radiation	
	Insolation	
	Heating and Cooling of Atmosphere	
	Terrestrial Radiation	
	Temperature	
	Temperature Inversion	
	Atmospheric Pressure	
	Pressure Belts	
	Winds	

	Clouds	
	Precipitation	
	Rainfall	
	Fronts	
	Cyclones	
10.	Oceans	117
	Relief of the Ocean Floor	
	Temperature of Ocean	
	Salinity of Ocean Waters	
11.	Movements of Ocean Water	129
	Waves	_
	Ocean Currents	
	• Tides	
12.	Soil	141
	Soil Profile	
	Factors influencing Soil Formation	
	Classification of Soils	
	Minerals of the Soil	
	Soil Erosion	
13.	Major Biotic Regions of the World	151
	Biomes	
14.	Human Geography	155
	Races	
	Human Development	
	Population	
	Demographic Transition Theory	
	Human Settlements	
15.	Economic Geography	172
	Agriculture	
	Crops	
	Livestock Dainy Forming	
	Dairy Faiming Eloriculture	
	Arine Resources	
	Mineral Resources	
	Energy Resources	
16.	Industry	214
	Classification of Industries	
	Factors Affecting Location of Industries	
	World Industrial Regions	
	World Industrial Problems	
17.	Transportation	218
	Land Transportation	
	Water Transportation	
	Air Transport	
18.	Appendix	224

Universe and the Solar System

Origin of the Universe

• Universe: Everything that exists, including distant stars, planets, and satellites, as well as our own planet and all of its people.

Theories about origin of Universe:

1. Big Bang theory

- The most popular argument regarding the origin of the universe .
- aka expanding universe hypothesis.
- Edwin Hubble in 1920 proved that the universe is expanding.
- Took place 13.7 billion years before the present.
- Galaxies move further and further apart with time and thereby, the universe is considered to be expanding.
- Scientists believe that though the space between the galaxies is increasing, observations do not support the expansion of galaxies.
- **Stages** in the development of the universe:

2

- Beginning- All matter forming the universe existed in one place as a "tiny ball" (singular atom) with an unimaginably small volume, infinite temperature and infinite density.
- Big Bang- "Tiny ball" explodes violently which led to a huge expansion.
 - The expansion **continues even to the present day.**
 - As it grew, some energy was converted into matter.
 - Rapid expansion within fractions of a second after the bang- later, it slowed down.
 - Within the first 3 minutes from the Big Bang event, the first atom began to form.
 - Within 300,000 years from the Big Bang, temperature dropped to 4,500K and gave rise to atomic matter.
 - The universe became transparent.
- **Common misconception:**
 - Gives the complete origin of the universe but it does not describe the energy, time and space involved in the creation of the universe.
 - Only explains how the universe emerged from its initial high-temperature state.
 - Only describes the size of the observable universe and not the universe as a whole
- Evidences of Big Bang
 - Expanding galaxies:
 - Hubble in 1929 noted that galaxies outside our own Milky Way were all moving away from us, at a speed proportional to its distance from us.
 - Realized that there must have been an instant in time (now known to be about 14 billion years ago) when the entire Universe was contained in a single point in space.
 - The Universe must have been born in this single violent event which came to be k/a "Big Bang."
 - Cosmic Background radiation:
 - Early photons, the afterglow of the Big Bang k/a cosmic background radiation (CBR) can be observed even today.

2. Pulsating theory

- Universe is believed to be pulsing, expanding and shrinking alternately,
- According to this theory, the universe's expansion may be halted by gravitational attraction at some point in the future, causing it to compress again.
- After it has been constricted to a particular size, it will explode again, and the universe will begin to expand.
- The pulsating universe is created by the universe's parallel expansion and contraction.

Components of the Universe

Galaxy

- Collection of millions or billions of stars, gas and dust, bound together by gravity.
- Mainly divided into four types viz. elliptical, normal spirals, barred spirals and irregular.

Milky Way Galaxy

- Shape- spiral.
- Has a disk-shaped structure diameter of roughly 100000 light years.
- Around its centre, the Milky Way galaxy rotates gently in a counter-clockwise manner.
- Centre- All stars (including the sun and the solar system) rotate.
- Appears like a river of light flowing from one corner to the other in the night sky, therefore k/a Akash Ganga.

oppersurfles Unleash the topper in you

Stars

- Incredibly hot celestial beings that generate their own light.
- Massive clouds of hydrogen gas, helium, and dust.
- **3 types** as per their colour and temperature:
 - Red: low surface temperatures
 - White: high surface temperatures
 - Blue: very high surface temperatures
- In the night sky, all stars (save the pole star) appear to travel from east to west- caused by the earth's rotation on its axis.
- The monthly locations of the stars fluctuate- due to interaction between the rotation of the earth around its axis and the orbit of the earth around the sun.
- # Birth and Evolution of a Star
- Raw material for star formation- Hydrogen.
- Beginning of a star's life cycle- formation of thick clouds of hydrogen and helium gas (i.e. Nebula) in galaxies.
- Birth caused by the gravitational collapse of these too thick clouds of gases in the galaxy.

ProtoStar

- **Resembles a star**, but **core not heated enough for nuclear fusion** to occur- occurs only when the **initial temperatures** are very **high hard to achieve and control.**
- Difficult to view frequently covered by dust, which filters the light they emit.

T Tauri Star

- Young (< 10 million years old), light star experiencing gravitational contraction.
- Intermediate stage between a Protostar and a low-mass main sequence star.

Main sequence stars of fusion ignition

- Hydrogen + helium.
- Make up the vast majority of stars in the universe (about 90%).
- A star like the Sun swells up to become a red giant at the end of its life, before shedding its outer layers as a planetary nebula and finally decreasing to become a white dwarf.

Final Stages of a Star's Life

- Enters red-giant phase- becomes a red-giant star.
- Can then **die out** by becoming a **white dwarf star** or exploding as a **supernova star** → development of **neutron stars and black holes**, **depending on its mass**.
- White dwarf tiny hot star that is at the end of its life cycle leftovers of regular stars that have exhausted their nuclear energy reserves.

NOVA

- Occurs on the **surface of a white dwarf.**
- If two stars in the system are close enough together, material (hydrogen) from the partner star's surface can be transferred onto the white dwarf.
- When enough material accumulates on the surface of a white dwarf, nuclear fusion occurs, resulting in a dramatic brightening of the star.

Supernova

- Star's rapid death causes it to brighten to the brightness of 100 million suns for a brief period of time.
- The very bright burst of radiation disperses most or all of a star's material at a high velocity, causing a shock wave to propagate into the interstellar medium.
- These shock waves cause condensation in a nebula, opening the way for the formation of a new star.
- Responsible for a large amount of primary cosmic rays.

Black Dwarf

- Last stage of star development.
- It is a white dwarf that has cooled to the point that no substantial heat or light is emitted.
- No black dwarfs are projected to exist in the universe yet since the time necessary for a white dwarf to achieve this condition is calculated to be greater than the universe's current age.

Brown Dwarfs

- Objects that are too big to be planets but not big enough to be stars.
- Considered to develop from a collapsing cloud of gas and dust in the same manner as stars do.
- The **centre** of the cloud, however, is **not thick enough to start nuclear fusion** when the cloud falls.

Neutron Stars

- Stars that **emit neutrons.**
- Mostly made up of neutrons.
- Formed during supernova pushing protons and electrons to combine to form a neutron star.
- **High density stars** (A sphere with a diameter of merely 20 kilometres can hold three times the mass of the Sun).
- If it has a **larger mass**, and **intensely high gravity** shrinking it even further, eventually becoming a black hole.

Black Holes

- At the end of their lives, big stars are believed to create black holes.
- Gravitational pull is so strong that nothing, not even light, can escape it.
- A black hole's matter density can't be measured (it's infinite!).
- Warp space around them and can pull nearby objects, including stars, into them.

Dark matter

- A kind of matter hypothesised in astronomy and cosmology to account for a significant amount of the **universe's mass that appears to be absent.**
- Invisible to telescopes- does not emit or absorb significant amounts of light or other electromagnetic energy.
- A black hole is not the same as dark matter.
- Unknown elements of dark matter.
- Might be a swarm of black holes, a dwarf, or a whole new particle.

Solar System

- Age: 4.6 billion years old
- Distance: 27,000 light years from the Milky Way's centre.
- Components sun, eight planets and their satellites + asteroids, comets, and meteors.
- Sun- centre of the solar system.
- The sun's gravitational influence maintains the whole solar system rotating around it → sun's gravitational pull determines velocity of all solar system components.
- ~ 99.9% of the matter in the solar system from the sun.

Sun

- Age: 4.6 billion years.
- **Diameter**: 1.39 million km.
- Temperature:
 - Surface- 6000 °C on surface
 - Core: 16 million ⁰C
- **Density**: 1.41 times that of water.
- Rotation time: 25 days and 9 hours.
- Rotational speed: 7179.73 km/h. (rotates counter-clockwise)
 - The earth's rotational velocity is 1675 kilometres per hour.
- Mass: 3,32,900 times of Earth masses.
- Distance: 150 million kilometres away from Earth
- Time taken by light to reach earth: 8 minutes and 20 seconds.

Time taken by light to reach Earth from the closest star, proxima centauri : 4.3 light years.

Internal Structure and Atmosphere of the Sun

• Solar interior - core, radiative zone and the convective zone.

- Solar atmosphere photosphere, chromosphere, and the corona (solar wind is an outflow of gas from the corona).
- Photosphere
 - Bright outer layer of the Sun emits most radiation.
 - Extremely **uneven surface.**
 - Effective temperature on the outer side of the photosphere- 6000°C.
- Chromosphere
 - Just above the photosphere is the chromosphere.
 - Relatively thin layer of burning gases.
 - The chromosphere is a bit cooler 4,320°C.
- Corona
 - Atmosphere of plasma that surrounds the Sun and other celestial bodies.
 - Stretches millions of kilometres into space and may be viewed best during a total solar eclipse.

Plasma

- **Ionised gas** (atoms and molecules are converted into ions typically by removing one or more electrons from the outer shell)
- Eg. Lightning and electric sparks -made from plasma.
- Neon lights 'plasma lights'- light comes from the plasma inside of them.

• Sunspot

- Dark patch on the surface of the Sun.
- Appear as dark areas as about 500-1500°C cooler than the surrounding chromosphere.
- Has a lifetime ranging from a few days to a few months.
- Each spot has a black centre or umbra, and a lighter region or penumbra, surrounding it.
- Sun 1% cooler when it has no sunspot and that this variation in solar radiation might affect the climates of the Earth.
- Solar prominence
 - An arc of gas that erupts from the surface of the Sun.
 - Can loop hundreds of thousands of miles into space.
 - Held above the Sun's surface by strong magnetic fields and can last for many months.
 - Later they erupt, spewing enormous amounts of solar material into space.
- Solar Wind
 - Stream of energised, charged particles, primarily electrons and protons, flowing outward from the Sun.
 - Speeds upto 900 km/s and at a temperature of 1 million degrees (Celsius).
 - Made of plasma (ionised atoms).
- Solar Flares:
 - Magnetic anomalies cause solar flares to form on the sun's surface.
 - Magnetic storms that seem like brilliant spots with a gaseous explosion on the surface.

Impact of Solar winds:

- 1. Aurora
 - A natural light show in the sky commonly observed in high latitudes (Arctic and Antarctic). (This is due to the earth's magnetic field lines and the solar wind.)

• Caused by Charged particles (electrons and protons), entering the atmosphere from above, creating ionisation and excitation of atmospheric elements, as well as visual emissions.

apersuole

- 2. Some planets have atmospheres, while others don't.
 - Solar wind particles have a well-developed magnetic field reach the planet deflected.
 - Magnetosphere -
 - **Region around a planet dominated by the planet's magnetic field- Earth** has the **strongest magnetosphere** of all the rocky planets.
 - **Overall shape** is determined by the **solar wind.**
 - **Planets with a weak / non-existent magnetosphere** prone to solar wind atmospheric stripping.
 - o Side facing the Sun- magnetosphere is generally shaped like a hemisphere,
 - **Opposite side-** extends in a lengthy trail.
 - Magnetopause -
 - Abrupt boundary between a magnetosphere and the surrounding plasma.
 - Boundary between the planet's magnetic field and the solar wind.

Planets

- A celestial body that orbits a star in an elliptical path.
- 2 groups:
 - Terrestrial Planets-
 - Inner planets (as they lie between the sun and the belt of asteroids)
 - Have smaller and denser bodies
 - Composition- silicates and metals.
 - Dense, rocky compositions, few or no moons, and no ring systems.
- Mercury (Buddh):
 - Smallest and closest to the sun.
 - Distance from Sun: 57.91 million km
 - **Orbital period:** 87.97 Earth days,(Shortest)
 - Length of day: 58d 15h 30m
- Venus (shukr):
 - Brightest planet in the solar system (morning/ evening star)
 - Rotates in anticlockwise direction
 - The **hottest** planet in the Solar System- high concentration of CO₂ and thick atmosphere.
 - Distance from Sun: 108.2 million km
 - Orbital period: 225 days
 - Length of day: 116d 18h 0m
- Earth (Prithvi):
 - Only known planet to sustain life.
 - **Distance from Sun**: 149.6 million km
 - Age: 4.543 billion years
 - Orbital period: 365 days
 - Natural Satellite: MOON

8

- Mars (Mangal):
 - Red Planet: Presence of iron oxide on surface
 - Length of day: 1d 0h 37m
 - o Distance from Sun: 227.9 million km
 - Orbital period: 687 days
 - Natural satellites: Phobos, Deimos
 - Jovian planets / Gas Giants -
 - planets of outer circle
 - Have a greater size and less dense materials.
 - They usually have a **thick atmosphere**, consisting of **helium and hydrogen**.
- Jupiter(Brhaspati):
 - Largest planet of the solar system
 - Length of day: 0d 9h 56m
 - o Distance from Sun: 778.5 million km
 - Age: 4.603 billion years
 - Orbital period: 12 years
 - **Natural satellites**: Io, Europa, Ganymede, and Callisto(called the Galilean satellites because Galileo discovered them.)
 - Saturn(shani)
 - Saturn's rings are probably made up of billions of particles of ice and ice-covered rocks.
 - Length of day: 0d 10h 42m
 - Tistance from Sun: 1.434 billion km
 - Orbital period: 29 years
 - Titan, Enceladus, Mimas, Tethys, etc.
 - Titan second-largest moon in the Solar System (larger than Mercury)
 - Only satellite in the Solar System with a substantial atmosphere (nitrogen-rich).
 - Uranus(arun)
 - Totates in **clockwise direction** i;e opposite of the sun's rotation.
 - Length of day: 0d 17h 14m
 - Distance from Sun: 2.871 billion km
 - Orbital period: 84 Years
 - P Natural satellites: Miranda, Ariel, Umbriel, Titania, and Oberon.
 - Neptune(Varun)
 - Farthest known planet
 - Generation of the second se
 - *Trongest sustained winds* (2,100 km/h) of any planet in the Solar System found here.
 - Length of day: 0d 16h 6m
 - Distance from Sun: 4.495 billion km
 - Orbital period: 165 years
 - * Natural satellites: Triton, Hippocamp, Proteus, Nereid, etc.

Asteroids

- Rocky remains left over from the formation of the solar system.
- These remains failed to consolidate due to Jupiter's gravitational influence.
- Composition refractory stony and metallic materials, with some ice.
- Size- microscopic to hundreds of kilometres.
- Ceres largest asteroid (946 km in diameter), a protoplanet, and a dwarf planet.
- All other asteroids are considered as tiny Solar System bodies.

Kuiper Belt:

- A circumstellar disc in the outer Solar System.
- Spans 30 AU from Neptune's orbit to around 50 AU from the Sun.
- Pluto (39 AU)- largest known object in the Kuiper belt.

Oort cloud

A giant shell of icy bodies that encircle the solar system occupying space at a distance between 5,000 and 100,000 AU.

arsnó

Comets

• An icy small solar system body- heats up (when passing close to the Sun) due to solar radiation and the solar wind - begins to outgas (release gases) - atmosphere and sometimes a tail visible.

- Have highly elliptical orbits.
- **Composition- Stony and metallic minerals held** together **by frozen gases** (water, ammonia, methane, and carbon dioxide).
- Types:
- Short-period comets orbital period 100 years- generally originate in the Kuiper belt.
- Long period comets orbital period thousands of years, come from the more distant Oort Cloud.

Meteoroid, Meteor and Meteorite

- Meteoroid: Any solid debris originating from asteroids, comets, or other astronomical objects that drifts across interplanetary space.
- Meteor: A flash of light that emerges in the sky when a meteoroid hits the atmosphere (mesosphere) at a high speed and burns up due to friction. Sometimes known as a 'shooting star' or a 'falling star.'
- Meteorite: When a meteoroid does not burn entirely and lands on the surface of the Earth. Meteorite crater:
 - A circular depression generated on the earth's surface as a result of a meteorite impact.
 - Most visible meteorite craters Moon and Mercury's surfaces (because they are geologically inactive due to a negligible atmosphere).
 - World's Largest Meteor Crater: 1,300 metres deep Arizona(US).
 - Chicxulub crater (Mexico's Yucatan Peninsula) caused by a meteor impact that is believed to have wiped out the dinosaurs (mass extinction at the end of the Cretaceous 65 million years ago).
- Meteorite craters in India
 - Lonar Lake (1.8 km in diameter) in Buldhana District of Maharashtra.
 - Dhala crater (14 km in diameter) in Shivpuri district, Madhya Pradesh.
 - Ramgarh crater (3.5 km in diameter) is a potential meteorite crater in Kota plateau in Rajasthan.

Meteor Showers

- Occurs when Earth encounters many meteoroids at once.
- Comets also orbit the sun.
- As a **comet gets closer to the sun**, some of its **icy surface boils off, releasing** lots of particles of **dust and rock (meteoroids).**
- This **comet debris gets scattered along the comet's path**, especially in the **inner solar system** (including planets Mercury, Venus, Earth and Mars).
- When Earth makes its journey around the sun, its orbit crosses the orbit of a comet i.e. Earth encounters a bunch of comet debris.
- These meteoroids when enter the earth's atmosphere burn up and cause continued lighting of sky for some time k/a meteor shower.
- Named for the constellation where the meteors appear to be coming from.
- Eg. Orionids Meteor Shower appears to be originating near the constellation 'Orion the Hunter'.

Moon

- Diameter one-quarter of earth.
- Distance from earth- 3,84,400 km.
- Light takes only a second to reach us from the moon.
- **Tidally locked to the earth**, meaning that the **moon revolves around the earth** in about 27 days which is the **same time it takes to complete one spin**.
- Hence, only one side of the moon is visible from earth.
- Without moon, Earth's tilt could vary as much as 85 degrees (at present the Earth's axis of rotation is tilted at an angle of 23.5 relative to our orbital plane).

Tidal locking - Object's orbital period = rotational period.

Formation of Moon:

- Formation is an outcome of 'giant impact' aka 'the big splat'.
- A body of the size 2-3x of mars collided into the earth shortly after the earth was formed- blasted a large part of the earth into space.
- Part of blasted material continued to orbit the earth formed into present moon about 4.44 billion years ago.
- Moon used to revolve much closer to Earth than today.
- Earth rotates -> Moon's gravity causes tides.
- Little friction between the tides and the turning Earth- earth's rotation slows down just a little (1.4 milliseconds in 100 years).
- As Earth slows- Moon drifts away a little (four centimetres per year).

Types of Moon:

- 1. Blood Moon/ Copper Moon
 - Total lunar eclipses aka blood moons because of the reddish orange glow the moon takes on.
 - Total lunar eclipse Earth moves between the Sun and the Moon cuts off the Moon's light supply.
 - Surface of the Moon takes on a reddish glow instead of going completely dark.
 - Reddish color during totality due to Rayleigh scattering.

Rayleigh scattering

Same mechanism **responsible for** causing **colorful sunrises and sunsets**, and for the **sky to look blue.**

2. Blue Moon

- Appearance: two and a half years on average.
- Blue moon does not mean blue coloured moon. It is just second full moon of any calendar month.

3. Super moon

- Full moon occurs at its perigee.
- Rare event.
- Has to satisfy two conditions
 - Moon must be closest to the earth
 - Should be a **full moon**.
- Moon- **30 % brighter** and **14 % larger**.
- Difference cannot be seen with naked eye.

Dawn and Twilight

- Dawn: The period between sunrise and full daylight.
- Twilight: The period between sunset and complete darkness.
- Occurrence- Earth receives scattered or refracted light from the sun when it is still below the horizon during dawn and twilight.
- Poles- winter darkness is much longer- mostly merely twilight.

Eclipse

- Occurrence: When the Sun, the Earth, and the Moon are in a straight line.
- Types :

1. Lunar Eclipse

- Ideal Position: Only when the Sun, the Earth, and the Moon are in a straight line, and the Earth is between the Sun and the Moon,
- Possible only on a Full Moon day. However, since these three bodies must be in the same plane as the ecliptic, a lunar eclipse does not occur on every Full Moon day.

Total lunar eclipse: Moon exactly in the plane of the ecliptic. Partial lunar eclipse: Moon close to the ecliptic plane. No eclipse: Moon much above or far below the ecliptic plane.

2. Solar Eclipse

- Ideal Position: Only when the Sun, the Earth, and the Moon are all in a straight line, and the Moon is between the Sun and the Earth.
- Possible on a New Moon day -But does not occur on every New Moon day.

Total Solar Eclipse: Moon is exactly in the plane of the ecliptic. Partial solar eclipse: Moon is close to the ecliptic plane. No Eclipse : Moon is much above or far below the ecliptic plane. Annular Eclipse: Moon covers the sun but the sun can be seen around the edges of the moon.

• Diamond Ring Effect: A visual phenomena can be seen from Earth when standing in the umbra of the moon's shadow.

