

Rajasthan Subordinate & Ministerial Services Selection Board

Part – B Volume – 6

Pharmacology and Toxicology

RAJASTHAN PHARMACIST

CONTENTS

Pharmacology and Toxicology				
1.	Introduction	1-3		
2.	Route of drug administration	3-4		
3.	Pharmacokinetic	5-20		
4.	Pharmacodynamic	20-29		
5.	Combined effect of drug	29-32		
6.	New Drug development	32-33		
7.	Adverse Drug Effect	34-36		
8.	Antidote	36-37		
9.	Autonomic Nervous System	38-39		
10.	Para Sympathomimetic System - Drugs	40-48		
11.	Drug Used Glaucoma	48-50		
12.	Anticholinergic System	51-52		
13.	Adrenergic System	53-61		
14.	Anti-Adrenergic Drug	62-63		
15.	Autacoids	64-77		
16.	NSAID	78-83		
17.	Anti-Gout Drugs	83-85		
18.	Rheumatoid Arthritis	86-87		
19.	Drug for Cough	87-89		
20.	Bronchial Asthma	90-92		
21.	Hormone - Related drugs	93-96		

22.	Thyroid Hormone	97-100
23.	Antithyroid Drugs	101-102
24.	Antidiabetic Drugs	102-107
25.	Drug acting on uterus	107-108
26.	Skeletal Muscle Relaxant	108-109
27.	Local anesthetic	110-112
28.	General anaesthetic	112-114
29.	Ethyl - Methyl Alcohol	114-116
30.	Diuretics	117-123
31.	Anti-Diuretic	123-125
32.	Hematinics - Erythropoietin	126-128
33.	Drug Affecting Coagulation - Bleeding	129-133
34.	Anti-Platelet Drug	133-135
35.	Hypolipidemic drugs - Plasma Expender	136-139
36.	Drug for Peptic Ulcer - Gerd	140-145
37.	Emetics - Antiemetic	145-149
38.	Drug for Constipation	149-150
39.	Drug for Diarrhoea	150-152
40.	Antimicrobial Drugs Introduction	153-157
41.	Sulfonamide	157-159
42.	Co - Trimoxazole	160-161
43.	Quinolone	161-162
44.	Beta lactam Antibiotic	162-169
45.	Tetracycline	169-170
46.	Chloramphenicol	170-171

47.	Aminoglycosides Antibiotic	171-172
48.	Macrolide Antibiotic	172-173
49.	Other Antibiotic	173-177
50.	Anti T.B. Drugs	178-180
51.	Anti Leprotic Drugs	180-182
52.	Anti-Fungal Drugs	182-186
53.	Anti-Viral Drugs	187-192
54.	Anti-Malarial Drugs	192-198
55.	Anti-Cancer drugs	199-208
56.	Sedative - Hypnotics	209-214
57.	Anti-Epileptic Drugs	215-218
58.	Parkinsonism	218-222
59. 60.	Antipsychotic and Antimanic Drugs Anti-depressant	222-226 226-228
61.	Antianxiety	229
62.	Opioid	229-233
63.	Antihypertensive Drug	234-240
64.	Congestive heart failure	240-243
65.	Antiarrhythmic Drugs	244-245
66.	Respiratory	246-269
67.	CVS	270-300
68.	Liver Disease	301-315

Pharmacology and Toxicology

Pharmacology

Pharmacon + logus

Pharmacon \rightarrow Durg

Logus \rightarrow Study

Pharmacology is the branch of biology which deal with the study of drugs action.

Drug \rightarrow Substance or material that is used or intended to be used to modify or explore physiological system or pathological states, for benefit of the recipient.

Branch of Pharmacology

Pharmacokinetic →

Pharmacon + kinetic Pharmacon \rightarrow drug

Kinetic \rightarrow movement

Pharmacokinetic is the branch of pharmacology which deal with study of movement of drug within the body.

It include \rightarrow Absorption (A)

- \rightarrow Distribution (D)
- \rightarrow Metabolism (M)
- → Excretion (E) of drug or shortly we can say ADME of drugs it means what the body does to the drugs.

Pharmacodynemic \rightarrow Pharmacon + dynemic

Pharmacon \rightarrow drug

dynemic \rightarrow power

- * Pharmacodynemic is the branch of pharmacology which deal with the study of drug, their mechanism of action. Pharmacological action & their adverse effect or what the drug does to the body.
- * Clinical pharmacology It deal with study of drug in human volunteers.
- * Toxicology Study of Toxic effect of drugs.
- * Chemotherapy Treatment of infectious disease with antimicrobial & drugs used to treat cancer.

Various discovery by scientist

- i. Father of Modern pharmacology Oswald schmiedbberg.
- ii. Father of Indian pharmacology RamNath Chopda
- iii. Father of chemotherapy Paul Ehrlich.
- iv. Discovery of penicillin Alexander Flaming (in 1928)
- v. Discovery of insulin Banting & Best
- vi. Father of Pharmacy Galen

ORPHAN drugs

Drugs that one used for the diagnosis treatment & prevention of rare disease. E.g.

Rifabutin (Anti T.B. drug) Sumatriptan (Treat migran) Digoxin toxicity (Treat overdose of Digitalis) Fomipizole (Antidote for methanol poisoning) Amphotercin B (Antibiotic)

<u>Prescription Drugs</u>: It is a pharmaceutical drug that legally requires a medical prescription to be dispensed.

E.g. Antidepressant drug Antibiotic

Non- prescription Drugs

Also called over the counter (OTC) drugs Drug that can buy without a doctor's prescription e.g. ENO

Paracetamol Strepsil etc.

Route of Administration of drugs

Factor affecting Route of drug administration

- * Physical & chemical properties of drug
- * Emergency / Routine use (Fast or slow)
- Condition of the patient
 E.g. Unconscious, diarrheas Vomiting

- * Age of Patient
- * Effect of 1st pass metabolism.

Route of drug Administration

- i. Local Route
- ii. Systemic Route

Local Route – Higher concentration is attained at desired site without exposing the rest of the body.

<u>Topical</u> – Application of the drugs on the surface of the body or mucous membranes. Poorly absorption by oral route like Nystatin, Streptomycin

Drug inhaled – Salbutamol Terbutaline

Injection at Local site -

Like - Intra-articular injection (into joint)

Intra- thecal injection (into CSF)

Intra - arterial injection (into fine arterial bed)

Systemic Route

<u>Oral</u>:

Most commonly used but not suitable

- For Unpalatable drugs like Paraldehyde
 - * Irritable drug like emetine cause nausea & vomiting
 - * Drug destroyed by digestive juice e.g. pen. G

Hormones

Drugs with high 1st pass metabolism
 e.g. Amino glycoside

Sublingual or Buccal:

Suitable for non-irritating & lipid soluble drugs e.g. Nitroglycerine Liver is by passed

<u>Rectal</u>: Suitable for administration of irritant & unpleasant drugs. About 50% of drugs by pass liver.

Cutaneous:

Drugs are applied as patch over skin. Local irritation & erythema may occur e.g. Fentanyl Nicotine etc.

Inhalation:

Suitable for volatile gases & liquid. e.g. Halothan Amyl Nitrate

Nasal: Liver is by passed e.g. Decompressing

Parenteral:

- (a) Subcutaneous (S.C.)
 - * Suitable for depot preparation
 - * Dermojet A device used for S.C. administration.
- (b) Intramuscular (I.M.)
 - * Injected into skeletal muscle like deltoid, gluteus maximums rectus femora's etc.

(C) I.V. (Intra venous)

* Drug bio availibity is 1000

(d) Intra dermal

* Used for BCG, small pox vaccine, T.B. Testing, leporine test, Sensitivity test.

Pharmacokinetics

- * It is the study of movement of drug within the body.
- * It deal with absorption (A)
 - Distribution (D) Metabolism (M) Excretion of drag (E) or ADME of drugs.

Absorption: Movement of drug from site of administration into the systemic circulation.

Passive diffusion

- * Drug transport in the direction of concentration gradient.
- * More lipid soluble drug diffuses quickly.
- * No energy Require.
- * No carrier require.
- * Follow 7st order kinetic.
- * Follow Fick's first low.

Filtration: - Drug Having low MW are easily filtered.

Specialized transport :-

Jnleash the topper in ye

Active transport

- * In active transport drug movement against concentration gradiant.
- * Energy & carrier required.
- * Symport (Cotrasport) Na+ & Glucose
- * Antiport (exchange transport) Na⁺ K⁺ Atpase

Facilitated diffusion

* Transport of Glucose across muscle cell membrane by transporter GLUTU.

oppersnote

- * Drug transport in the direction of concentration gradient.
- * No ATP consumed
- * No carrier required.

Factor Affecting absorption of drug

- * Weakly acidic drugs like aspirin batter absorbed from the stomach as unionized form.
- * Weakly Basic drugs like Morphine, Quinine are batter absorbed from intestine as unionized form.
- * Aqueous solubility Solution absorbed faster than solid.
- * Concentration of drug :- Concentrated solution absorbed faster than dilute solution.
- * Area of absorption surface More area faster absorption.
- * Blood Flow ↑ Blood flow remain the drug from the site of the absorption so reduce absorption.
- * Empty Stomach 1 absorption of drugs
- * Presence of food \rightarrow Retard drug absorption \rightarrow Except – Halofentrine
- Ionization of drug Drug is absorbed in unionized state so ionization decreases drug absorption.
- * Too lipophilic drug or too hydrophilic drug have poor absorption.

Bioavailability of drug

* Rate & Extent (fraction) of drug that is reaches in systemic circulation is called bioavailability.

e.g If two unit of a drug is administered by any route & 70% unit reaches in the systemic circulation, than bioavailability of drug is 70%.

- * Bioavailability of I.V. Route is 100%
- * Disintegration time & dissolution Rate affect bioavailability.
- Calculated by relating area under curve plasma concentration Time i.v. route
 & for that particular route.

First Pass metabolism

- * When drugs are administered orally, they have to pass via gut wall. Portal veinliver systemic circulation.
- * Drug with high hepatic 1st pass Metabolism are salbutamol, Verapamil, Propranolol, Nitroglycerin, Amitrptyline, Pethidine, Methyl testosterone

Distribution

After the drug reaches into the blood circulation, it may be distributed to various tissue & organs.

Distribution is determined by hypothetical parameter volume of distribution (Vd)

 $Vd = rac{Total amount of drug in body}{concentration of drug in Plasma}$

Factor affecting volume of distribution

- Lipid: Water partition coefficient of drug (lipid solubility) :-Highly lipid soluble drugs easily cross blood vessel wall & are distributed to the tissue I make volume of distribution.
- 2. <u>pka value of drug</u>: Highly ionized drug being lipid insoluble, remain inside the blood vessel so less volume of distribution occur.

- 3. <u>Plasma protein binding</u>: Highly plasma protein bound drug remain inside the blood vessel \rightarrow less Volume of distribution occur.
- 4. Degree of blood flow
- 5. Affinity for different tissue
- 6. Disease like CHF, Uremia & cirrhosis
- 7. Pregnancy.

Barrier of Drug

BBB (Blood brain barrier)

```
Only lipid soluble drug can cross BBB
```

e.g. levodopa,

propranolol

Physostigmine

They cross BBB & act on brain.

Placental barrier - competitively weak as compared to BBB.

Placental barrier are lipoidal & allow free passes of lipophilic drugs, while Restring hydrophilic drugs.

Plasma protein Binding (PPB)

Acidic drug generally bind to Plasma albumine

- * Basic drug generally bind to α -acid glycoprotein
- * Lipid soluble drug are highly plass protein bound.
- * Highly PPB drug within vascular compartment \rightarrow Small Vd. (volume of distribution).
- * Plasma Bound Fraction of drug is inactive & equilibrium with free drugs.
- * Generally concentration of drug refers to bound as well as free drug.
- * PPb drug neither act nor excrete out the body.
- Highly PPB drug are difficult to remove by haemodialysis in case of their poisoning.

Redistribution

When highly lipid soluble drugs are administered \rightarrow Initially distributed to highly perused organs.

Then redistributed to adipose tissue because of their affinity.

e.g. Thio pentone

Its anesthetic effect terminated within few minute due to redistribution.

Metabolism (Biotrans formation)

Biotransformation of drug may lead to:-:

- (i) Activation of drug (pro drug)
- (ii) Inactivation of drug & its metabolite
- (iii) Active metabolite for active drug

Most of the drug after metabolism convert into - water soluble 1 polarity

SO they can easily excrete out through kidney

Active drug

- 1. Amitripty line
- 2. Codein
- 3. Diazepam
- 4. Digitoxin
- 5. Imipromine
- 6. Phenacetin
- 7. Primidone
- 8. Spironolactne
- 9. Allpurinol
- 10. Morphine

Activation of drug

Inactive Drug (Pro drug)

- 1. Progunil
- 2. Levodopa
- 3. Fnalapril
- 4. Dipsvefrine
- 5. Sulindac
- 6. Prednisone
- 7. Bacampicillin

Active metabolite

Nortryptyline Morphine Oxazepam Digoxin Desipramine Paracetamol Phenobarbiton Canrenone Alloxanthine Morphine – 6 – glucornide

Active form

Cycloguanil Dopamine Enalaprilat Epinephrine Sulfide metabolite Prednisolone Ampicillin

- 8. Sulfasalazine acid
- 9. Acyclovir
- 10. Cylophosphamide
- 11. Benorylate

Sulfa pyridine + S-Amino salicylic

Acyclovir triphosphate Aldopnosphamide Aspirn +PCM

Type of Bio transformation Rxⁿ.

Reduction

Removal of oxygen or addition of Hydrogen

e.g. Chloramphenicol, Methadon.

(iii) <u>Hydrolysis</u>:

Breakdown of the compound by addition of water is called Hydrolysis.

This is common among drug which have ester group (R-CWR) or Amide group (RCONH₂)

- E.g. Procaine
 - succinylcholine Lignocaine procainamide, Aspirin, Pethidine

Oxytocin

(iv) <u>Cyclization</u>:

Conversion of a straight Chain compound into Ring Structure.

E.g. Proguanil

 \downarrow

▼ Cycloguanil (Cyclic)

(v) <u>Decyclization</u>:

Breaking up of the ring structure of the drugs.

e.g. – Pheno barbiton

phenytoin

(2) Phase -II Rxⁿ / conjugation Rxⁿ / synthetic Rxⁿ Example

- (i) Glucuronide Conjugation
- (ii) Glycinc Conjugation
- (iii) Glutathion conjugation
- (iv) Acetylation
- (v) Methylation
- (Vi) Sulfate conjugation

(i) Glucuronide Conjugation:

Responsible Enzyme \rightarrow UDP Glucuronosyl transferase.

e.g. Chloramphenicol

Aspirin,

Phenacetin.

Most of the drug metabolized by Glucuronid conjugation in phase-II Rxn.

(ii) <u>Glycine conjugation</u>:

Responsible enzyme: Acetyl COA glycene transferase.

This is common among R-COOH

e.g. Salicylate and other drug having R-COOH (Carboxylic acid group)

(iii) Glutathione conjugation:

Responsible enzyme:- Glutathione transferees

e.g. PCM

(iv) Acetylation:

Responsible enzyme: -

- N acetyl transferees
- * This is most common among amino group contending drug (-NH₂) e.g. sulfa drug

Sulfonamide

Dapsone Hydrazine

(v) Methylation:

Responsible enzyme \rightarrow Transimethylase

e.g. Adrenaline, Histamine, Nicotinic acid

(vi) Sulfate conjugation:

Responsible enzyme \rightarrow sylpho transferees

e.g. Chloramphenicol Adrenal and Sex hormone

Drug metabolizing enzyme :-

- (1) Microsomal
- (2) Non microsomal

Microsomal enzyme

These are located on smooth endoplasmic Reticulum primary in liver also in kidney, intestinal mucosa & lungs

e.g. Monooxygenase

Cytochrome Pyso

Glucuronyl transferase

Non- Microsomal enzyme

These are present in the cytoplasm & mitochondria of Hepatic cell as well as other tissue including plasma.

e.g. Esterase,

Amidase

Conjugaises

The most important enzyme for oxidation reaction is pyso.

<u>CYP3A4</u>: Carryout biotransformation of *largest number (50%)*. Most common phase -I biotransformation process is Oxidation. Most common phase-II biotransformation process is - Glucuronidation conjugation.

Enzyme induces & Inhibitor

* Enzyme inducer → Increase the metabolism of other drug. So other drug effect decrease.

So dose of such other drug should be increase.

Enzyme inhibitor

Trick

- G \rightarrow Griseofulvin, Glucocorticoid
- $P \rightarrow Phenytoin, Phenylbytazone$
- $R \rightarrow Rifampicin$
- $S \rightarrow Smoking$

Cell \rightarrow Carbamazapine

Chloraldenyde

Phone \rightarrow Pheno barbitone

Enzyme inhibitor

- $C_5 \rightarrow Cimetidine$
 - \rightarrow Ciprofloxacin
 - \rightarrow Cyclosporine
 - → Clarithromycin
 - \rightarrow Calcium channel blocker
 - e.g. Amlodipin

Nefadipin

Diltiazem

Varapamil

- $D \rightarrow Diltiazem$
- $E \rightarrow Erythromycin$
- $F_2 \rightarrow Floxetine$

SSRI (Antidepressant) Fluvoxamine

- $G \rightarrow Grape fruit Juice$
- $H \rightarrow HIV$ Protease inhibitor
 - e.g. Indonavir

Ritonavir

Squinavir

- I Itraconazole
- K Ketoconazole

Hoffmann elimination :

In this process drug can be inactivated with need of enzyme. e.g. :- Natural muscle Relaxant like Atracurium eliminated.

Excretion

* Drugs & their metabolite are excreted in urine, faces, exhaled air, saliva, Milk, sweat etc.

ppersnote.

- * Most of the drugs are excreted in urine.
- * Large molecular weight (7500 da) drugs are eliminated in faces.
- * Volatile drugs like alcohol, general anesthetics are eliminated by lung.
- * Drug like lithium, Rifampin are exerted is saliva & sweat.

Renal Excretion: Glomerular filtration - Tubular

absorption + Tubular secretion

(i) Glomerular Filtration

- It depend upon -
 - (a) Plasma protein binding Only unbound form is excreted, the drug which is plasma protein bound can't be filtered.
 - (b) Renal blood flow GFR increase with increase in renal Blood flow.

(ii) Tubular Reabsorption

99% blood comes back through the reabsorption process.

- It depend Upon :-
- a. <u>Lipid solubility</u>: Non lipid soluble drugs are excreted more, purpose of metabolism is to make the drug water soluble, so that it can be excreted.
- b. Ionization of drug: Highly ionized drug excreted more.
- c. Urinary PH for partially ionized drug:
 - * Basic drug ionized more on acidic PH & less reabsorbed.
 - * Acidic drug are ionized more & reabsorbed less in alkaline PH.

Example :-

<u>Aspirin Toxicity</u>: Aspirin is a acidic drug.
 So make urine Alkaline (Basic) by NAHCO₃, so all the drugs can be excreted completely.

(iii) Tubular secretion

- * There are two type of pump present in proximal Tubule, one is Acidic & other one is for basic drugs.
- * Only one drug can pass at a time.