/)

@?J?:‘LWVL@/Q/A

LJGC NJET

Paper -)

NATIONAL TESTING AGENCY (NTA)

ELECTRONIC SCIENCE

Paper 2 — Volume 5

INNOVATIONS

NN N NN R R R R R R R R R [
-thHOLDOO\ICDU'I-hwl\Jl—\p

O o N AEWNE

Boolean Logical Ideas
Logic Minimization
De-Morgan’s Law
SOP & POS

Conversion From SOP-POS and POS-SOP

K-Map

Diagonal Grouping
Tabulation Method
Sequential Circuits
Binary Shift Register

. Counters

. Combinational Circuit

. BCD to EX-3 Conversion
. Seven Segment

. BCD Arithmetic

. Code Conversions

. Logic Family

. RTL

. DTL

. TTL

. ECL

. Digital to Analog Converter (DAC)
. Memory Designing

. Introduction to VDHL

Unit-5

10
12
17
18
23
30
38
55
58
70
81
83
89
96
104
110
116
121
122
123
131
134

N NN NNNNNNRRRRR R R R R R

WO N AR WDNE

Unit-6

Microprocessor 8086

Introduction

Architecture

Address & Register

Instruction

Pointers and Index Register
Addressing Modes

Instruction Set

Assembler Directives

Program Group Code, Data, Stack
Assembly Language Programming

. Segment Combination

. Procedures

. Interrupts and Interrupt Routines
. Strings and String Handling Instruction
. 8086 Signals

. Basic Configurations

. Addressing Modes

. Introduction to Multiprogramming
. 1/0 Interfacing

. Memory Devices and Interfacing

. Architecture of 8051

. 8051 Instructions

. 8051 Addressing Modes

. Serial Port Programming 8051

. Interrupts

. Serial Communication in 8051

. LCD Interfacing

. Stepper Motor Interface

148
148
152
139
154
155
160
177
181
185
191
196
199
205
208
214
220
221
227
229
239
249
255
260
264
270
279
282

Unit—-5

_— [
IBPm’MWO A

leash the topper in you

(ntroduction to VHDL

(ntroduction

(t is impossible to directly design any complex hardware therefore according to the
specification and functionality of the bardware, programming languages are needed.
HDL (Hardware description language) can be used to model a digital system at
many level, ranging from the algorithmic level to the gate level.

(VHDL, which stand for VHSIC (Very high speed integrated circuit) hardware de-
scription language was developed in the early 1980s as a spin-off of a high speed
iIntegrated circuit research project sponsored by the U.S. department of defence./In
1986. he |EEE was presented with a proposal to standardize the language, which
did in 1987 after substantial The language was enhanced and update in later years,
resulting it become standard language in (C industry. (HDL is programming language
that have been designed and optimized for digital circuit design and modeling. This
Is a language for describing the structural, physical and behavioral characteristics of
digital systems.

Feature of VHDL language-
1. VHDL language is publicly available, human readable, machine readable and not
proprietary.

2. VHDL is an [EEE and ANS| standard therefore it become as a standard package
This standard effort was make it easier for chip vendor.

3. Various digital modeling techniques, such as finite state machine description,
algorithm mic descriptions and Boolean equation, can be modeled using the
language [t support both synchronous and asynchronous timing model. VHDL
combines features of software programming language, text language and netlist
language.

4. VHDL include many features appropriate for describing the behaviour of electronic
components ranging from simple logic gates to complete microprocessors and custom
chips.

5. VHDL allow electrical aspects of circuit behaviour (such as rise and fall times of
signals, delays through gates and functional operation) to be precisely described. The
resulting HDL simulation model can be used as building in larger circuit for the
purpose of simulation.

6. One of most important aspects of VHDL are their ability to describe the performance
specification for a circuit in the form of test bench. Test bench are higher level
description of circuit stimulus and corresponding expected output that verify the
behaviour of the hardware circuit over time.

L~ m
@@ﬁs&www A

nleash the topper in you

7. VHDL is powerful language with which enter to new designs at a high level, they are
also useful as a low level form of communication.

8. VHDL allow to validate the design prior fabrication and provide a range of features
that support simulation of digital system. 1ly. VHDL supports both structural and
behavioural descriptions of a system at multiple levels of abstraction.

VHDL Language Basic

VHDL is used to describe a model for a digital hardware device. This model specifies the
external view of the device and one or more internal view. The internal view specifies
the interface of the device through which it communicates with other models in
theenvironments. VHDL has set pattern for writing a code called VHDL code model. This
model consist three parts and can be shown by following block diagram. To understand
VHDL, consider a very simple examples so, we can see what con- stitute the minimum
VHDL source file. We will start by a very simple combinational circuit, a 8-bit comparator.
This comparator will accept two 8 bit inputs, compare them and produce a 1 bit cult
result (either 1, indicating a similar or O indicating a difference between the two inpur
values).

Library

Library in VHDL code depends upon the complier of VHDL. This library consist all the
syntax of the language and all the logic gates as primitives. Syntax to include the library

N VHDL code is as in use iceestd_logic_1 164.al, Where icee the [EEE standard,

"std_logic" is the data type which will be discuss later and this chapter and "164" is the
version of the language derived by IEEE.

Entity Declaration

A VHDL entity is a statement (indicated by the entity keyword) that define the external
specification of a circuit or sub-circuit. The minimum VHDL design description must
include at least one entity and one corresponding architecture. When we write an entity
declaration, you must provide a unique name for that entity and a port list define the
input and output ports of the circuit. Each port in the port list must be given a name,
direction (or mode, in VHDL jargon) and a type. Optionally, you may also include a special
type of parameter list (called a generic list) that allows you to past additional information
iInto an entity.

Therefore in brief, an entity declaration provides the complete interface for a circuit.
Using the information provide in an entity declaration (the name, data type and mode or
direction of each port), we have all the information need to connect that portion of a
circuit into other or higher level circuit etc.

_— [
l@@hfﬁ/sw@ A

leash the topper in you

Uniqu/e name (This name cannot be a keyword)

entity iS'

port (portl, port2 : mode type)

4‘.¥mode type)

enq entity_name;

port name

Consider an example of half adder circuit which has two inputs and two output as shown
in fig.

a > —e SUM

B

®
) CARRY
M

The entity declaration of the half adder is

entity half_adder is port (A, B : in bit); port (sum, carry, : out. bit) ; end half_adder ;

The entity declaration include a name, half_adder and a part declaration statement de-

fining all the inputs and outputs of the entity. The port list include definition of four

ports

A, B, sum and carry. Each of these four ports is given a mode (either in, out or inout)
and a type (in this case bit is a predefined type of the language, which mean this
entity have been specified the port that can take the values '0' or ''). Another example
of an entity declaration for the 8 bit comparator.

lbrary ieee use ieee. std_logic_1164 all; entity compare is port (A, B : in std_logic_vector
(0 to 7), EQ : out std_logic), end compare

The entity declaration includes a name, compare, and a port declaration statement defin-
ing all the inputs and outputs of the entity. The port list includes definitions of three
ports A, B, and EQ. Each of these three ports is given a direction (either in, out or

inout), and a type (in this case either std_logic_vector (0 to 7), which specifies an 8-bit

L~ m
@@ﬁs&www A

nleash the topper in you

array, or std_logic, which represents a single-bit value). From above two examples of
entity declaration, it is clear that entity declaration does not specify anything about the
internal of the entity. It only specifies the name of the entity and the interface ports.
However the actual operation of the circuit is not included in the entity declaration.

Port

All the pins of an integrated circuit are corresponds as the port in an entity of a VHDL
code for that particular (C. Integrated circuits have unidirectional and bidirectional pins and
according to that pin, ports are define in the entity. Port declaration is primary content
of the entity declaration. Each port has port name mode and type. The interface port
are the signals through which the entity passes information to and form its external
environment through mode. There are four type of modes.

1 n

2. lnout
3. Qut

4. Buffer

1 (n: [t is an input port which can be only read the assign value to that port within the
entity model. Consider an entity declaration. AlB : Ir b. entity entity_name is port (A, B
. in bit); end entity_name (n above declaration A and B are input type mode of the
port.

2. Qut: [t is an output port which can be update with in the entity model. [t is very clear
that it cannot be read. It means data flows only out from this port. Consider an entity
declaration entity entity_name is port (Z: out bit) end entity_name; In above declaration
z i1s output type mode of the port.

3. lnout: [t is a bidirectional port which can be used for in and out. [t-means we can
assign the data to that port as well as received the data from the port with in the
entity model. The entity declaration is entity entity name is port (zinput bit);, end
entity name; Buffer: [t is also a bidirectional port which can be read and update the
data within

4. The entity model. But it differs from the inout mode that it cannot have more than
one source. This port is not synthesizeble so VHDL designer avoid to use this port.

The entity declaration is entity entity_name is port (z : buffer bit), end entity_name;

T

leash the topper in you

ln@——ﬁz - % Out
[)— | | JIX] Buffer
X €:D_$____® In Out

In g
. Out
8ldentifier

(dentifier are user defined word used to name objects in VHDL models. We have seen
examples of identifiers for input and output signals as well as the name of the design
entity and architecture body. Basically, there are two types of identifiers, a basic
identifier and an extended identifier. Basic identifiers as define by the VHDL 87
standard. The basic identifiers follow basic rules. That is Contain only alpha-numeric

characters (A to Z, a to z, 0-9) and the underscore (_) character.

The first character must be a letter and a last one cannot be an underscore. An
identifier cannot include two consecutive underscores. An identifiers, is case insensitive
(for example And2 and AND2 or and2 refer to the same object) An identifier can be of
any length. VHDL Keyword not allowed

Examples of valid identifiers are : X10, x_10, My_gate 1.

Some invald identifiers are : _X10, my_gate@input, gate-input.

The rules for these basic identifiers are often too restrictive to indicate signals. For
examples, if one wants to indicate an active low signal such as an active low RESET one
cannot call it "/RESET". (n order to overcome these lmitations in the VHDL 43 standard,
a new type of identifiers is defined. They are called extended identifiers. There is a set
of extended identifier rules which allow identifiers with any sequence of char- acters.

The basic rules of extended identifier is An extended identifier is enclosed by the back
slash, "\" character (e.g. \2 FOR $, idie_state).

An extended identifier is case sensitive (eg\ rdy \ , \ RDY \ , \ RDy \ are refer to
the different object).

An extended identifier allow graphical characters (e. \ Vector_$_vector!). An extended
identifier contain space and consecutive underscore (eg. Vlast of zone \ , \ide _
_state\).

An extended identifier allow the VHDL Keywords.

L~ m
@@ﬁs&www A

nleash the topper in you

VHDL Object

Anything that stores information for intermediate operation is called an "object” in VHDL.
(n VHDL, a data object holds a value of some specified type. A object is create by an
object declaration and has a value and type associate with it. An object can be constant,
variable, signal. Following is a brief discussion of each class of objects.

1. Constant

A constant holds a value that cannot be changed within the design description or any
executable code. The declaration syntax is constant identifier type : = value; An example
of constant declaration is constant weight. This value is usually assigned upon declaration.
Constant are generally used to improve the readability of code and me also make it
easier to modify code rather than changing a value each place where if used, you need
to change only the value of the constant. For example. Constant width : integer : = §;
constant must be declared in package entity, architecture or process declarative regions.
Duction Ullo stant defined in a package can be referenced by any entity or architecture
To the package is used; one defined in an entity declaration is visible only within the
Way ; one define in an architecture is visible only to that architecture; and one define
the process declarative region is visible only to that process. Variable

An object of class variable holds a single value of given type. A variable can be updated
wing a variable assignment statement. The variable is updated without any delay as soon
the statement is executed. Variables assignment is always seauential and within a
wincess. Variable can only be used within sequential areas, w..... a process and in

cubprograms (function and procedures). The declaration syntax is variable identifier [,

identifier] : type = initial values]; An example of a variable declaration and initialization is
Variable sum : integer = 10 In above example variable is object class, sum is object
name and integer are data type and initialized by "0. Therefore the variable assignment
and initialization symbol : = dicates immediate assignment. (f multiple variable assignments
are made then the order of the assignment decides the value of variable.

Objects of the variable class only have a current value and no time history. They are
sed as intermediate storage locations and for passing parameters to functions in
thequential bodies. Variables can not be defined in the concurrent portion of the code.
Although 1993 standard has introduced shared variables, most tools don't support them.
cope of variable: the

scope of the variable is only limited to the process, procedure or a function where it is
declared. Hence variables can not be used to transmit infor- mation from one process to
another.

Assignment to a variable can be made only with in a sequen tial portion of the code.
The assignment operator “=" is used for variables. The target variable immediately
assume the value of the RHS expression.

L~ m
@@ﬁs&www A

nleash the topper in you

Declaration of variable: Variable are declared before the “begin” keyword of the sequential
body. E.g. process variable a, b, ¢ : BIT ; Begin end process;

3. Signals

An aobject belonging to signal class hold a list of value of a given type. The signals can
be declared in an entity, architecture package or subprogram. Signal can hold or pass logic
values, while variables cannot. A signal is a path way along which information passes
from one component in the VHDL description to another. Signals are objects whose
value may be changed with respect to a time. [t can be any type, the signal assignment
symbol is <= and initiaized by = The declaration syntax is

signal identifier [, identifier.] ; type [= initial value] ;

Example

signal clock : bit ; signal gate_delay : time = 10 n sec ; In first example signal is the
object class, clock is the object name and bit is the data type (n second example signal

Is the object class, gate_delay is the object name time is the data type and 10ns is the
initialization of the signal.

Signal assignment is concurrent outside the process and sequential within a process.
Signal take the last value assigned to it in a process. Its is assigned the value only after
the completion of the simulation cycle run. Signal can have . specified in their
assignment. E.g. signal waveform : std_logic ; waveform <= 'O, ' after 5ns, '0' after
10ns, 'I' after 20ns, Difference between variable and signal how it relates to, when their
value changes. A variable change instantaneously when the [t is important to understand
the difference between variables and signals, particularly variable assignment is executed.
On the other hand, a signal changes the value a dela after the assignment expression is
evaluated, If not delay is-specified, the signal wit variables and signals. Lets compare the
two files in which a process is used to calcularchange after a delta delay. This has

important consequences for the updated values of the signal RESULT [7].
sample of a process using Variables

architecture VAR of EXAMPLES is

signal TRIGGER, RESULT : integer = O ;

begin

process

variable variable 1 : integer =1,

variable variable 2 : integer =2,

variable variable 3 : integer =3;

_— [
l@@m}wmﬁ A

leash the topper in you

begin
wait on TRIGGER ;
variablel = variable Z;

variable 1 + variable 3 ;

variable? :

variable Z;

variable3
RESULT <= variable 1 + variable 2 + variable 3;
end process ;

end VAR,;

Example of a process using Signals

architecture SIGN of EXAMPLE is

signal TRIGGER, RESULT: integer = 0,
signal signall : integer =7;

signal signal2 : integer =2

signal signal3 : integer =3;
begin

process

begin

wait on TRIGGER;

signall <= signalZ;

signalz <= signall + signal3;
signal3 <= signalZ;

RESULT <= signall + signal2 + signal3;
end- process;

end SIGN,

12

in the first case, the variables "variablel, variable?2 and variables” are computed sequen
nally and their values updated instantaneously after the TRIGGER signal arrives. Next the
RESULT is computed using the new values of the variables. This results in the following

_— [
l@@m}www A

leash the topper in you

values (after a time 'TRIGGER): variablel = 2, variable? = $ (-2 + 3), variables 5. Since
RESULT is a signal it wil be computed at the time TRIGGER and updated at the time
TRIGGER + delta. (ts value will be RESULT = 12 (ie. 2+5+5). On the other hand, in the
second example, the signals will be computed at the time

TRIGGER. All of these signals are computed at the same time, using the old values of
signal 1, 2 and 3. All the signals will be updated at delta time after the TRIGGER has
arrived. Thus the signals will have these values: signall = 2, signal 2 = 4 (=1 + 3),
signal3 = 2 and RESULT = 7.

Data Type

Data type in VHDL is define a set of value and a defined set of valid operations. Like a
high level software programming language, VHDL allows data to be represented in terms
of high-level data types. A data type is an abstract representation of stored data, such
as you might encounter in software languages. These data types might represent
individual wires in a circuit, or they might represent collection of wires. The data types in
VHDL define in four types are -

1. Scalar

n. Composite
. Access
v. File

Access

Fig. 8.5

Scalar types include an numeric, enumeration, and physical object types. Types which
areSome up of real numbers, integer, quantities with associated physical units such as
times, object which are made up of character literals or identifiers are all scalar types.
guler type have an order, which allows relational operator to be used with them.

There are four different kind of scalar types. These types are :

Integer Type: It is a set of whole number with a range of value from - (2'-1) to +
(231-1)

L~ m
@@ﬁs&www A

nleash the topper in you

Example assignment to a variable of type integer is architecture test_int of test is begin

process (X) variable a: integer;

begin

a =1

-- legal
-- legal
a = -l
a =10
-- lllegal

end process;
end testUnt ;
(n the above example, the first two variable assignments are valid since they assign
integers to variables of type integer. The last variable assignment is illegal because it
attempts to assign a real number value to a variable of type integer. ") Real Type: This
type consist real number or floating point numbers. The minimum range for any

implementation is defined by -10E38 to +10 E38. (t consist the opace of 32 bit and
these data types are not synthesizeable.

Example assignments to a variable of real type is' architecture test_real of test is
begin

Process (X)

variable a: real,

begin

-- legal

a =13

-7.5, —- legal

-- lllegal

a =1,

a =17 813 ; -- legal

a = 53 ns; llegal

_— [
l@@m}wmﬁ A

leash the topper in you

end process ;

end test_real;

(n above example first two variable are legal but third and fifth are illegal due to integer
and physical type respectively.

(i) Enumerated Type: An enumeration type declaration defines a type that has a set of
user defined value consisting of identifier and character literals. It is used to increase
the readability of the code. These are character one of the ASCIl set), Boolean (can
be false or .true), Bit (can be O or 1), [EEE 164 standard define array of
std_logic_1164. This consist nine legal values 'V (uninitiaized), 'X' (unknown), '0
(strong '0'), ' (strong I), 'Z' (high impedance), 'W' (weak unknown), L' (weak '0), H'
(weak ') '- (Don't care). The designer first declares the members of the
enumerated type. [n below example, the designer declares a new type binary with
two legal values, ON and OFF.

type binary is (On, Off) ;
. some statements .. architecture test_enum of test is begin
process (X)

variable a : binary;

begin

a = ON;
-- legal

a = OFF,
-- legal

. more statements ..
. more statements ..

end Process ;

end test_enum,

(iv) Physical Type: A numeric type used for representation of physical quantities of
measurement units such as mass, time, voltage, length, current etc.

_— [
l@@m}wmﬁ A

leash the topper in you

2. The physical date

type is used for values which have associated units. The resigner first declares the
name and range of the data type and then specifies the units of the types. Example of
physical type declaration is type capacitance is

range 0 to 1E 10

units

pf

nf = 1000 pf;
(f = 1000 nf,
mf = 1000 uf;
end units;

Notice there is no semicolon separating the end of the type statement and the units
statements. The only predefined physical type is time.

3. Composite Type

The scalar types can hold one value at the current simulation time while composite types
can hold multiple value at a time. Composite types consist of arré, >e and record type.
() Afray Type: An array type consist of multiple elements of the same type and one or
more dimensions (e.g. two dimensions array). the array is declared in a type statement.
These are numerous items in an array declaration.

type word is array (15 down to 0) of bit;

type word is array (0 to 7) of bit;

(n the above examples first item is the name of the array. Second the range of the
array declared. The keyword 'to' and 'down to' designated ascending or descending indices

respectively, with in specified range. The third item in the array declaration is the
specification of the data type in each element of the array.

ype bit_vector is array (natural range <>) of bit;
ype std_logic_vector is array (natural range <>) of std_logic;

Above examples are declaration for one dimensional array (vector) and as uncon- trained

array. The number of bits, sid_logic in them are not specified (range <>). example of
The a two dimensional array is

L~ m
@@ﬁs&www A

nleash the topper in you

ype table 6 x 2 is array (0 to 5, 1 down to 0) of bit; " means table 6 x 2 is a two
dimensional array which consist all the elements of bit Pe and one dimension consists 6
values 0 to 5 and second dimension consist 2 value down to O. Of Record Type: An
object of record type has multiple elements of same or different yes. A type declaration
is used to define a record. Note that the types of records lements must be defined
before the record is defined. Also notice that there is not semi-colon after the word
record. The record and end record keywords bracket the field names. After the Record
keyword the record's field names are assigned and their data types are specified type

binary is (on, off), type switch_info is record.
status : binary;

(Dnumber : integer,;

end record

variable switch : switch_info;

switch.status : = On;

-- status of the switch

switch.Dnumber = 30; -- eg. number of the switch.

(n the above example a record type, switch_info is declared. This example makes use of
the binary enumerated type. Note that value are assigned to rec lements by use of
the field names.

4. Access Type

The VHDL access type wil not be discussed in detal in this module; it wil be
covered more thoroughly in the 'Advanced Concepts in Level VHDL' module appearing
in this collection of modules. (n brief, the access type is similar to a pointer in other
programming languages in that it dynamically allocates and deallocates storage space
to the object. This capability is useful for implementing abstract data structures (such
as queues and first-in first-out buffers) where the size of the structure may not
be known at compile time.

File Type
A file type is a special type of variable that contains sequential data. File types are
very useful for writing test benches.

5. Sub Type
A subtype declaration is used to declare a, subtype, which is a type with a constraint
the type from which the subtype is derived is called the base form of range
constraints or index constraints. However, a subtype may include the entire type.
Constraints take the range of the base type. The constraint for the subtype may
be empty, in which case " subtype is simply a different name for the type. Since

