

electronic SCIENCE

Paper 2 – Volume 7

NATIONAL TESTING AGENCY (NTA)

Paper - 2

Index

Unit – 8

1. Communication 1

2. Types of Errors 6

3. Cyclic Redundancy Checks (CRC) 11

4. Digital Modulation Techniques 18

5. FSK Bit Rate, Baud and Bandwidth 23

6. Phase shift Keying 26

7. Quadrature Amplitude Modulation (QAM) 36

8. Data Communication Code 39

9. ASCII Code 42

10. EBCDIC Code 44

11. Data Modems 46

12. Satellite Communication Systems 48

13. Cellular Telephone Systems 55

14. Optical Fiber Communication 76

15. Transmission Characteristics of Optical Fibers 97

16. Optical Sources and Detectors 110

17. WDM Concepts and Components 136

18. IOT 139

19. Module – 2 159

20. Power Calculation in Am 185

21. Frequency Division Multiplexing 196

22. Generation of FM Using PM 206

23. Bandwidth Using Carson’s Rule 217

24. Mathematical Analysis 226

25. Tuned Transformer Principal 236

26. Simple Slope Detector 239

Unit – 8

Communication

COMMUNICATION

Basic Information Theory:

** Communication system performance is limited by:

°° Available signal power

°° Background noise

°° Bandwidth limits
** Can we postulate an ideal system based on physical principles, against which we can

assess actual systems?

** The role of a communicaiton system is to convey, from transmitter to receiver, a

sequence of messages selected from a finite number of possible messages. Within

a specified time interval, one of these messages is transmitted, during the next

another (maybe the same one), and so on.

°° The messsages are predetermined and known by the receiver.

°° The message selected for transmission during a particular interval is not

known by the receiver.

°° The receiver knows the (different) probabilities for the selection of each

message by the transmitter.
** The job of the receiver is not to answer the question "What was the message?",

but rather "Which one?".

1.	 Amount of Information:
Suppose the allowable messages (or symbols) are

	 m1, m2, …

and each have probability of occurrence

	 p1, p2, …

The transmitter selects message k with probability pk. (The complete set of symbols

given by

	 Ik = log2
1
pk

has been conveyed. Ik is dimensionless, but is measured in bits.

{m1, m2, …} is called the alphabet.)

If the receiver correctly identifies the message then an amount of information Ik

1

Communication

Example:

Given two equiprobable symbols m1 and m2. Then p1 = 1/2, so correctly idefifying
m1 carries

	 I1 = log2 2 = 1 bit

of information. Similarly the correct transmission of m2 carries 1 bit of information.

Sometimes bit is used as an abbreviation for the term binary digit. If in the above

example m1 is represented by a 0 and m2 by a 1, then we see that one binary
digit carries 1 bit of information. This is not always the case-use the term binit for

binary digit when confusion can occur.

Example:

Suppose the binits 0 and 1 occur with probabilities 1/4 and 3/4 respectively. Then
binit 0 carries log2 4 = 2 bits of information and binit 1 carries log2 4/3 = 0.42 bits.

The definition of information statisfies a number of useful criteria:

°° It is intuitive: the occurrence of a highly probable event carries little information

(Ik = 0 for pk = 1).
°° It is positive: information may not decrease upon receiving a message (Ik ≥

0 for 0 ≤ pk ≤ 1).
°° We gain more information when a less probabe message is received (Ik >

Il for pk < pl).

°° Information is additive if the messages are independent:

	 Ik, l = log2
1
p pk l

 = log2
1
pk

 + log2

1
pl

 = Ik + Il

2.	 Average Infomation: Entropy:

** Supoose we have M different independent messages (as before), and that a long

sequence of L messages is generated. In the L message sequence, we expect p1

L occurrences of m1, p2L of m2, etc.

The total informationin the sequence is

	 Itotal = p1L log2
1

1p
 + p2L log2

1

2
p

 + …

so the average information per message interval will be

2

Communication

	 H =
I

L

total = p1 log2
1

1p
 + p2 log2

1

2
p

 + … = pk
k�
�

1

M

log2

1
pk

.

This average information is referred to as the entropy.

Example:

Consider the case of just two messages with probabilities p and (1 – p). This
is called a binary memoryless source, since the successive symbols emitted are

statistically independent.

The average information per message is

	 H = p log2

1
p
 + (1 – p)log2

1
1− p

1

00 0.2 0.4
p

0.6 0.8 1

0.5H

The average information is maximised for p = 1/2, with a corresponding entropy of
1 bit/message.

In general, it can be proved that for M messages, the entropy H becomes maximum

when all messages are equally likely. Then each message has probability 1/M, and

the entropy is

	 Hmax =
1

1

M

M

k�
� log2 M = log2 M

3.	 Information Rate:

** If the source of the messsages generates messages at the rate r per second, then
the information rate is defined to be

	 R = rH = average number of bits of information per second.

Example:

An analogue signal is band limited to B Hz, sampled at the Nyquist rate, and the

samples quantised to 4 levels. The quantisation levels Q1, Q2, Q3 and Q4 (messages)

are assumed independent and occur with probabilities p1 = p4 = 1/8 and p2 = p3 = 3/8.

3

Communication

The average information per symbol at the source is

	 H = pk
k�
�

1

4

 log2
1
pk

	 =
1

8

log2 8 +
3

8
log2

8

3
 +

3

8
log2

8

3
 +

1

8
log2 8

	 = 1.8 bits/message.

The information rate R is

	 R = rH = 2B(1.8) = 3.6 bits/s.

Note that we could identify each message by a 2 digit binary code:

	 Message	 Probability	 Binary Code
	 Q1	 1/8	 0 0

	 Q2	 3/8	 0 1

	 Q3	 3/8	 1 0

	 Q4	 1/8	 1 1

If we transmit 2B messages per second, we will be transmitting 4B binits per
second (since each message requires 2 binits).

Since each binit should be able to carry 1 bit of information, we should be able to
transmit 4B bits of information using 4B binits. From the example we see that we
are only transmitting 3.6 B bits. We are therefore not taking full advantage of the
ability of binary PCM to convey information.

One remedy is to select different quantisation levels, such that each level is equally
likely. Other methods involve the use of more complicated code assignments.

Special Instructional Objectives:
On completion of this lession, the student will be able to:

** Explain the need for error detection and correction

** State how simple parity check can be used to detect error

** Explain how two-dimensional parity check extends error detection capability

** State how checksum is used to detect error

** Explain how cyclic redundancy check works

** Explain how Hamming code is used to correct error

4

Communication

Introduction:

** Environmental interference and physical defects in the communication medium can

cause random bit errors during data transmission. Error coding is a method of

detecting and correcting these errors to ensoure information is trasferred intact

from its source to its destination. Error coding is used to fault tolerant computing in

computer memory, magnetic and optical data storage media, satellite and deep space

commuications, network communications, cellular telephone networks and almost any

other form of digital data communicaiton. Error coding uses mathematical formulas

to encode data bits at the source into longer bit words for transmission. The "code

word" can then be decoded at the destination to retrieve the information. The extra

bits in the code word provide redundancy that, according to the coding scheme

used, will allow the destination to use the decoding process to determine if the

communication medium introduced errors and in some cases correct them so that the

data need not e retransmitted. Different error coding schemes are chosen depending

on the types of errors expected, the communication medium's expected error rate

and whether or not data retransmission is possible. Faster processors and better

communications technology make more complex coding schemes, with better error

detecting and correcting capacbilities, possible for smaller embedded systems, allowing

for more robust communications. However, tradeoffs between bandwidth and coding

overhead, coding complexity and allowable coding delay between transmissions, must

be considered for each application.

** Even if we know what type of errors can occur, we can't simple recognize them. We

can do this simply by comparing this copy received with another copy of intended

transmission. In this mechanism the source data block is send twice. The receiver

comapres them with the help of a comparator and if thoe two blocks differ, a

request for re-transmission is made. To achieve forward error correction, three sets

of the same data block are sent and majority decision selects the correct block.

These methods are very inefficient and increase the traffic two or three times.

Fortunately there are more efficient error detection and correction codes. There are

two basic strategies for dealing with errors. One way si to include engouhg redundant

information (extra bits are introduced into the data sream at the trnasmitter on a

regular and logical basis) along with each block of data sent to enable the receiver to

deduce what the transmitted character must have been. The other way is to include

only enough redundancy to allow the receiver to deduce that eror has occurred, but

not which error haas occurred and the receiver asks for a retransmission. The former

strategy uses Error-Correcting Codes and latter uses Error-detecting Codes.

** To understand how errors can be handled, it is necessary to look closely at what

error really is. Normally, a frame consists of m-data bits (i.e., message bits) and

r-redundant bits (or check bits). Let the total number of bits be n (m + r). An n-bit

unit containing data and check-bits is often referred to as an n-bit codeword.

5

Communication

** Given any two code-words, say 10010101 and 11010100, it is possible to determine how

many corresponding bits differ, just EXCLUSIVE OR the two code-words and count

the number of 1's in the result. The number of bits position in which code words

differ is called the Hamming distance. If two code words are a Hamming distance

d-apart, it will require d signal-bit errors to convert one code word to other. The

error detecting and correcting properties depends on its Hamming distance.

°° To detecte d errors, you nedd a distance (d + 1) code because with such

a code thre is no way that d-signal bit errors can change a valid code word

into aother valid code word. Whenever receiver sees an invalid code word, it

can tell that a transmission errr has occured.

°° Similarly, to correct d errors, you need a distance 2d+1 code because that

way the legal code words are so far apart that even with d changes, the

original codeword is still closer than any other code-word, so it can be

uniquely determined.

First, various types of errors have been introduced in Sec. 3.2.2 followed by different

error detecting codes in Sec. 3.2.3. Finally, error correctng codes have been introduced

in Sec. 3.2.4.

Types of Errors:

** These interferences can change the timing and shape of the signal. If the signal is

carryiing binary encoded data, such changes can alter the meaning of the data. These

errors can be divided into two types: Single-bit error and Burst error.

Single-bit Error:

** The term single-bit error means that only one bit of given data unit (such as a byte,

character, or data unit) is changed from 1 to 0 or from 0 to 1 as shown in figure.

0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0

0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0

Sent

Received

Single bit change (1 is changed to 0)

Single bit error

** Single bit errors are least likely type of errors in serial data transmission. To see

why, imagine a sender sends data at 10 Mbps. This means that each bit lasts only

for 0.1 ms (micro-second). For a single bit error to occur noise must have duration

6

Communication

of only 0.1 ms (micro-second), which is very rare. However, a single-bit error can

happen if we are having a parallel data transmission. For example, if 06 wires are
used to send all 16 bits of a word at the same time and one of the wires is noisy,

one bit is corrupted in each word.

Burst Error:

** The term burst error means that two or more bits in the data unit have changed

from 0 to 1 or vice-versa. Note that burst error doesn't necessary means that error

occurs in consecutive bits. The length of the burst error is measured from the first

corrupted bit to the last corrupted bit. Some bit in between may not be corrupted.

0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0

0 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0

Sent

Received

Bits in error

Length of burst (6 bits)

Burst Error

** Burst errors are mostly likely to happen in serial transmission. The duration of the

noise is noramlly longer than the duration of a single bit, which means that the

noise affects data; if affects a set of bits as shown in figure. The number of bits

affected depends on the data rate and duration of noise.

Error Detecting Codes:

** Basic approach used for error detection is the use of redundancy, where additional

bits are added to facilitate detection and correction of errors. Popular techniques are:

°° Simple Parity Check

°° Two-dimensional Parity Check

°° Checksum

°° Cyclic Redundancy Check

Simple Parity Checking or One-dimension Parity Check:

** The most common and least expensive mechanism for error-detection is the simple

parity check. In this technique. a redundant but called parity bit, is appended to every

data unit so that the number of 1s is the unit (including the parity becomes even).

** Blocks of data from the source are subjected to a check bit or parity bit generator

7

Communication

form, where a parity of 1 is added to the block if it contains an odd number of

1's (ON bits) and 0 is added if it contains an even number of 1's. At the receiving

end the parity bit is computed from the received data bits and compared with the

received parity bit, as shown in figure. This scheme makes the total number of 1's

even, that is why it is called even parity checking. Considering a 4-bit word, different

combinations of the data words and the corresponding code words are given in Table.

Sender Data

1011011

1011011

1011011

1

1 Compute

parity bit

Compute

parity bit

Transmission Media

Even

Y

N

Receiver

Accept Data

Reject Data

Even-parity checking scheme

Possible 4-bit data words and corresponding code words

Decimal value Data Block Parity bit Code word

0 0000 1 00000

1 0001 1 00011

2 0010 1 00101

3 0011 0 00110

4 0100 1 01001

5 0101 0 01010

6 0110 0 01100

7 0111 1 01111

8 1000 1 10001

9 1001 0 10010

10 1010 0 10100

11 1011 1 10111

12 1100 0 11000

8

Communication

13 1101 1 11011

14 1110 1 11101

15 1111 0 11110

** Note that for the sake of simplicity, we are discussing here the even-parity checking,

where the number of 1's should be an even number. It is also possible to use old-

parity checking, where the number of 1's should be odd.

Performance:

** An observation of the table reveals that to move from one code word to aother,

at least two data bits should be changed. Hence these set of code words are said

to have a minimum distance (hamming distance) of 2, which means that a receiver

that has knowledge of the code word set can detect all single bit errors in each

code word. However, if two errors occur in the code word, it becomes another valid

member of the set and the decoder will see only another valid code word and know

nothing of the error. Thus erros in more than one bit cannot be detected. In fact

it can be shown that a single parity check code can detected only odd number of

errors in a code word.

Two-dimension Parity Check:

** Performance can be improved by using two-dimensional parity check, which organizes

the block of bits in the form of a table. Parity check bits are calculated for each row,

which is equivalent to a simple parity check bit. Parity check btis are also calculated

for all columns then both are sent along with the data. At the receiving end these are

compared with the parity bits calculated on the received data. This is illustrated in figure.

10110011 ⁝ 10101011 ⁝ 01011010 ⁝ 11010101

101100111 ⁝ 101010111 ⁝ 010110100 ⁝ 110101011 ⁝ 100101111

1 0 1 1 0 0 1 1   1

1 0 1 0 1 0 1 1   1

0 1 0 1 1 0 1 0   0

1 1 0 1 0 1 0 1   1

1 0 0 1 0 1 1 1   1

Original data

Row parities

Column parities

Data to be sent

Two-dimension Parity Checking

9

Communication

Performance:
** Two-Dimension Parity Checkiong increases the likelihood of detecting burst errors. As
we have shown in figure that a 2-D parity check of n bits can detect a burst error
of n bits. A burst error of more than n bits is also detected by 2-D partity check
with a high-probability. There is, however, one pattewrn of error that remains elusive.
If two bits ins one data unit are damaged and two bits in exactly same position in
another data unit are also damaged, the 2-D Parity check checker will not detect
an error. For example, if two data changed, making the data units as 01001110 and
001011101 the error be detected by 2-D parity check.

Checksum:
** In checksum error detection scheme, the data is divided into k segments each of m
bits. In the sender's end the segments are added using 1's complement arithmetic
to get the sum. The sum is complemented to get the checksum. The checksum
segment is sent along with the data segments as shown in figure. At the receiver's
end, all received segments are added using 1's complement to get the sum. The
sum is complemented. If the result is zero, the received data is accepted, otherwise
discarded, as shown in figure.

Performance:
** The checksum detects all errors involving an odd number of bits. It also detects most
errors involving even number of bits.

Example:

k = 4, m = 8

10110011

10101011

01011110

1

01011111

01011010

10111001

11010101

10001110

1

10001111

01110000

Example:

Received data

k = 4, m = 8

10110011

10101011

01011110

1

01011111

01011010

10111001

11010101

10001110

1

10001111

01110000

11111111

00000000

Sum:

Sum:

Checksum:

Complement =

Conclusion = Accept data
(a) (b)

(a) Sender's end for the calculation of the checksum, (b) Receiving end for checking the checksum

10

Communication

Cyclic Redundancy Checks (CRC):

** This Cyclic Redundancy Check is the most powerful and easy to implement technique.

Unlike checksum scheme, whis is based on addition, CRC is based on binary division. In

CRC, a sequence of redundant bits, called cyclic redundancy check bits, are appended

to the end of data unit so that the resulting data unit becomes exactly divisible by

a second, predetermined binary number. At the destination, the incoming data unit is

divided by the same number. If at this step there is no remainder, the data unit is

assumed to be correct and is therefroe accepted. A remainder indicates that the data

unit has been damaged in transit and therefore must be rejected. The generalized

technique can be explained as follows.

** If a k bit message is to be transmitted, the transmitter generates an r-bit seuqnece,

known as Frame Check Sequence (FCS) so that the (k + r) bits are actually being

by r zeros, by a predetermined number. This number, which is (r + 1) bit in length,

can also be considered as the coefficients of a polynomial, called Generator Polynomial.

The remainder of this division process generates the r-bit FCS. On receiving the

packet, the receiver divides the (k + r) bit frame by the same predtermined number

and if it produces no remaineder, it can be assumed that no error has occurred during

the transmission. Operations at both the sender and receiver and are shown in figure.

Data Data
m m

(n+1)bits (n+1)bits

n bits

YN

n n

Data

Divisor Divisor

CRC Reminder

ReceiverSender

AcceptReject Zero

00......0 CRC

CRC

Basic scheme for Cyclic Redundancy Checking

** This mathematical operation performed is illustrated in figure by dividing a sample 4-bit
number by the coeefficient of the generator polynomial x2 + x + 1, which is 1011,
using the modulo-2 arithmetic. Modulo-2 arithmetic is a binary addition process without

any carry over, which is just the Exclusive-OR operation. Consider the case where k
= 1101. Hence we have to divide 1101000 (i.e. k appended by 3 zeros) by 1011,
which produces the remainder r = 001, so that the bit frame (k + r) = 1101001 is
actually being jtransmitted through the communication channel. At the receiving end, if

the received number, i.e., 1101001 is divided by the same generator polynomial 1011
to get the remainder as 000, it can be assumed that the data is free of errors.

11

Communication

1 1 1 1

1 0 1 1 	 1 1 0 1 0 0 0

1 0 1 1

1 1 0 0

1 0 1 1

1 1 1 0

1 0 1 1

1 0 1 0

1 0 1 1

0 0 1

k

r

Cyclic Redundancy Checks (CRC)

** The transmitter can generate the CRC by using a feedback shift register circuit. The
same circuit can also be used at the receiving end to check whether any error has
occurred. All the values can be expressed as polynomials of a dummy variable X. For
example, for P = 11001 the corresponding polynomial is X4 + X3 + 1. A polynomial
is selected to have at least the following properties:

°° It should not be divisible by X.

°° It should not be divisible by (X + 1).
** The first condition guarantees that all burst errors of a length equal to the degree of
polyomial are detected. The second condition guarantees that all burst errors affecting
an odd number of bits are detected.

** CRC process can be expressed as XnM(X)/P(X) = Q(X) + R(X)/P(X)

** Commonly used divisor polynomials are:

°° CRC-16 = X16 + X15 + X2 + 1

°° CRC-CCITT = X16 + X12 + X5 + 1

°° CRC-32 = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7
+ X5 + X4 + X2 + 1

Performance:

** CRC is a very effective error detection technique. If the divisor is chosen according
to the previously mentioned rules, its performance can be summarized as follows:

°° CRC can detect all single-bit errors

°° CRC can detect all double-bit errors (three 1's)

12

Communication

°° CRC can detect any odd number of errors (X + 1)
°° CRC can detect all burst errors of less than the degree of the polynomial.

°° CRC detects most of the larger burst errors with a high probability.

°° For example CRC-12 detects 99.97% of errors with a length 12 or more.

Error Correcting Codes:

** The techniques that we have discussed so far can detect errors, but do not correct

them. Error Correction can be handled in two ways.

°° One is when an error is discovered; tghe receiver can have the sender

retransmit the entire data unit. This is known as backward error correction.

°° In the other, receiver can use an error-correcting code, which automatically

corrects certain errors. This is known as forward error correction.
** In theory it is possible to correct any number of errors atomically. Error-correcting

codes are more sophisticated than error detecting codes and require more redundant

bits. The number of bits required to correct multiple-bit or burst error is so high that

in most of the cases it is inefficient to do so. For this reason, most error correction

is limited to one, two or at the most three-bit errors.

Single-bit Error Correction:

** Concept of error-correction can be easily understood by examining the simplest case

of single-bit errors. As we have already seen that a single-bit error can be detected

by addition of a parity bit (VRC) with the data, which needed to be send. A single

additional bit can detect error, but it's not sufficient engough to correct that error

too. For correcting an error one has to know the exact position of error, i.e., exactly

which bit is in error (to locate the invalid bits). For example, to correct a single-bit

error in an ASCII character, the error correction must determine which one of the

seven bits is in errorr. To this, we have to add some additional redundant bits.

** To calculate the numbers of redundant bits (r) required to correct d data bits, let us
find out the relationship between the two. So we have (d + r) as the total number

of bits, which are to be transmitted; then r must be able to indicate at least d +
r + 1 different values. Of these, one value means no error, and remaining d + r
values indicate error location of error in each of d + r locations. So, d + r + 1
states must be distinguishable by r bits and r bits can indicates 2r, states, Hence,

2r must be greater than d + r + 1.
2r > = d + r + 1

** The value of r must be determined by putting in the value of d in the relation. For
example, if d is 7, then the smallest value of r that statisfies the above relation is
4. So the total bits, which are to be transmitted is 11 bits (d + r = 7 + 4 = 11).

13

Communication

** Now let us examine how we can manipulate these bits to discover which bit is in

error. A technique developed by R. W. Hamming provides a partical solution. The

solution or coding scheme he developed is commonly known as Hamming Code.

Hamming code can be applied to data units of any length and uses the relationship

between the data bits and redundant bits as discussed.

d d d r d d d r d r r

11 10 9 8 7 6 5 4 3 2 1

Redundant bits

Positions of redundancy bits in hamming code

Error position

0 (no error)

1

2

3

4

5

6

7

Position number

c3 c2 c1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

	 7	 6	 5	 4	 3	 2	 1

	 7	 6	 5	 4	 3	 2	 1

	 d4	 d3	 d2	 r4	 d1	 r2	 r1

	 d4	 d3	 d2	 r4	 d1	 r2	 r1

1 0 1 0

1 0 1 0 0

1 0 1 0 1 0

1 0 1 0 0 1 0

1 0 1 0 0 1 0

1 0 1 0 0 1 0

1 0 1 0 0 1 0

r1 → 	 1, 3, 5, 7

r2 → 	 2, 3, 6, 7

r4 → 	 4, 5, 6, 7

Data 1010

Adding r1

Adding r2

Adding r3

Data sent

Corrupted

Received Data

Corrected DataCorrected Data

Error position = 6

1	 1	 0
C3	 C2	 C1

Use of Hamming code for error correction for a 4-bit data

14

Communication

** Basic approach for error detection by using Hamming code is as follows:

°° To each group of m information bits k parity bits are added to form (m +

k) bit code as shown in figure.
°° Location of each of the (m + k) digits is assigned a decimal value.

°° The k parity bits are placed in positions 1, 2, …, 2k-1 positions. –K parity

checks are performed on selected digits of each codeword.

°° At the receiving end the parity bits are recalculated. The decimal value of the

k parity bits provides the bit-position in error, if any.
** Figure shows how hamming code is used for correction for 4-bit numbers (d4d3d2d1)

with the help of three redundant bits (r3r2r1). For the example data 1010, first r1 (0)
is calculated considering the parity of the bit positions, 1, 3, 4 and 7. Then the parity
bits r2 is calculated considering bit positions 2, 3, 6 and 7. Finally, the parity bits r4
is calculated considering bit positions 4, 5, 6 and 7 as shown. If any corruption occurs
in any of the transmitted code 1010010, the bit position in error can be found out
by calcualting r3r2r1 at the receiving end. For example, if the received code word is

1110010, the recalculated value of r3r2r1, which indicates that bit position in error is

6, the decimal value of 110.
Example:

Let us consider an example for 5-bit data. Here 4 parity bits are required. Assume

that during transmission bit 5 has been changed from 1 to 0 as shown in figure. The

receiver receives the code word and recalculates the four new parity bits using the

same set of bits used by the sender plus the relevant parity (r) bit for each set

(as shown in figure). Then it assembles the new parity values into a binary number

in order of r positions (r8, r4, r2, r1).

1 1 0 1 0 1 1

1 1 0 0 1 0 0 0 1 0 0

1 1 0 0 1 0 1 0 1 0 0

1 1 0 1 0 0 1

0 1 0 1

Data to be send

Data Received

Data to be send along with redundant bits

Data Received Minus Parity Bits

Parity bits recalculated

Calculations;

Parity recalculated (r8, r4, r2, r1) = 01012 = 510

Hence, bit 5th is in error i.e. d5 is in error.

So, correct code-word which was transmitted is:

1 1 0 1 0 1 1

Use of Hamming code for error correction for a 5-bit data

15

