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SET 

Definition: 

A set is a well-defined collection of objects of a particular kind. 

Ex.- Even natural numbers less than 10, i.e., 2, 4, 6, 8  

Prime factors of 21, namely 3 and 7  

The solution of the equation: x^2 – 5x + 6 = 0, viz, 2 and 3. 

 

Symbol for special set: 

N : the set of all natural numbers  

Z : the set of all integers  

Q : the set of all rational numbers  

R : the set of real numbers  

Z+ : the set of positive integers  

Q+ : the set of positive rational numbers, and  

R+ : the set of positive real numbers.  

 

Notes: 

(i) Objects, elements and members of a set are synonymous terms.  

(ii) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.  

(iii) The elements of a set are represented by small letters a, b, c, x, y, z, etc.  

 

Methods of Representation of set: 

(i) Roster or tabular form: In this form, all the elements of a set are listed, the 

elements are being separated by commas and are enclosed within braces { }.  

Ex. The set of even natural numbers is represented by {2, 4, 6, . . .}. The dots  

indicates that the list of even numbers continue indefinitely.  

 

Notes: 

(i) The order of the listed elements does not make sense in Roster form. In case 

of above example we can also write {4, 2, 6, 8, ….) 

(ii) Generally element is not repeated. For example, the set  
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of letters forming the word ‘COLLEGE’ is { C, O, L, E, G} or {G, E, L, O, C}. Here, 

the order of listing elements has no relevance.  

 

(ii) Set-builder form: In this form, all the elements of a set possess a single 

common property which is not possessed by any element outside the set. 

Ex.  In the set {2, 4, 6, 8,}, all the elements possess a common property, 

namely, each of them is a even natural number. 

V = {x : x is a even natural number.} 

 

Types of set:    

The Empty Set: The set having no elements in it, is called an empty set. 

Symbol:  φ or { }. 

Ex.  A = { x : x is a whole number greater than 1} 

 

Finite set: A set which is empty or consists of a definite number of elements is 

called finite.  

Ex. Let S be the set of solutions of the equation x^2 –25 = 0. Then S is finite. 

 

Infinite set: The set other than finite set is called Infinite set. 

Ex.  Let P be the set of points on a line. Then P is infinite. 

Note:  All infinite sets cannot be described in the roster form 

 

Equal Sets:  

Let’s consider two sets A and B, if every element of A is also an element of B 

and if every element of B is also an element of A, then the sets A and B are said 

to be equal. Clearly, the two sets have exactly the same elements. 

Ex.  Let A = {8, 2, 3, 4} and B = {3, 8, 4, 2}. Then A = B. 

 

Non Equal Sets: The sets other than equal are known as Non Equal set. 

Ex.  Let A = {8, 5, 3, 4} and B = {3, 8, 4, 2}. Then A ≠ B. 
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Subsets: 

Definition:  A set X is said to be a subset of a set Y if every element of X is also 

an element of Y. 

X ⊂ Y if x ∈ X ⇒ x ∈ Y 

 

Power Set:  The collection of all subsets of a set X is called the power set of X.  

It is denoted by P(X). In P(X), every element is a set. 

Ex. if X = { 3, 5 }, then  

P( X ) = { φ,{ 3 }, { 5 }, { 3,5 }}  

Note:  if X is a set with n(X) = m, then, n [ P(X)] = 2^m. 

 

Universal set: 

The set which contains every single set or elements in it. It is denoted by U. 

Ex.  Let A={x:x is a student of 11a} 

        B={x:x is a student of 11b} 

        C={x:x is a student of 11c} 

  Then, U = {x:x is a student of 11} 

 

Intervals as subsets of R:  Lets consider a, b ∈ R and a < b. 

  

Close interval: The interval which contains the end points also is called closed 

interval. It is denoted by [ a, b ]. 

[a, b ] = {x : a ≤ x ≤ b}  

Open interval: The interval which are closed at one end and open at the other, 

is called open interval. 

Ex.  

[ a, b ) = {x : a ≤ x < b} is an open interval from a to b, including a but excluding 

b.  

( a, b ] = { x : a < x ≤ b } is an open interval from a to b including b but excluding 

a.  
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common elements being taken only once. The symbol ‘∪’ is used to denote the 

union. Symbolically, we write A ∪ B and usually read as ‘A union B’ 

 

 

 

Properties of the Operation of Union:  

(i) A ∪ B = B ∪ A (Commutative law)  

 

A 
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Venn Diagram: 

 

The diagrams which consist of rectangles and closed curves  

usually circles, are called Venn Diagram.  

The universal set is represented usually by a rectangle and its subsets by  

Circles.  

Here, we have U as universal set and set A is subset of it.  

 

              U 

 

 

 

 

 

 

 

 

Union of sets:  Lets consider A and B be any two sets. The union of A and B is 

the set which consists of all the elements of A and all the elements of B, the 
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(ii) ( A ∪ B ) ∪ C = A ∪ ( B ∪ C)  

(Associative law )  

(iii) A ∪ φ = A (Law of identity element, φ is the identity of ∪)  

(iv) A ∪ A = A (Idempotent law)  

(v) U ∪ A = U (Law of U) 

 

Intersection of set: The intersection of two sets A and B  

is the set of all those elements which belong to both  

A and B. Symbolically, we write  

A ∩ B = {x : x ∈ A and x ∈ B} 

 

 

 

Properties of Operation of Intersection: 

(i) A ∩ B = B ∩ A  

(Commutative law).  

(ii) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C )  

(Associative law).  

(iii) φ ∩ A = φ, U ∩ A = A  

(Law of φ and U).  

(iv) A ∩ A = A  

(Idempotent law)  

(v) A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) (Distributive law ) i. e.,  

∩ distributes over  
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Difference of sets: The difference of the sets A and B in this order is the set of 

elements which belong to A but not to B. Symbolically, we write A – B and read 

as “ A minus B”. 

 

Complement of a set: Lets consider U be the universal set and A a subset of U. 

Then the complement of A is the set of all elements of U which are not the 

elements of A. Symbolically, we write A′ to denote the complement of A with 

respect to U.  

Thus, A′ = {x : x ∈ U and x ∉ A }. Obviously A′ = U – A  

 

Properties of Complement Sets: 

1. Complement laws:  

(i) A ∪ A′ = U 

(ii) A ∩ A′ = φ  

2. De Morgan’s law:  

(i) (A ∪ B)´ = A′ ∩ B′ (ii) (A ∩ B)′ = A′ ∪ B′  

3. Law of double complementation : (A′)′ = A  

4. Laws of empty set and universal set φ′ = U and U′ = φ 
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 The union of two sets A and B is the set of all those elements which are 

either in A or in B.  

 The intersection of two sets A and B is the set of all elements which are  

common. The difference of two sets A and B in this order is the set of elements  

which belong to A but not to B.  

 The complement of a subset A of universal set U is the set of all elements of 

U which are not the elements of A.  

 For any two sets A and B, (A ∪ B)′ = A′ ∩ B′ and ( A ∩ B )′ = A′ ∪ B′  

 If A and B are finite sets such that A ∩ B = φ, then  

n (A ∪ B) = n (A) + n (B).  

If A ∩ B ≠ φ, then  

n (A ∪ B) = n (A) + n (B) – n (A ∩ B). 
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 A set is a well-defined collection of objects.  

 A set which does not contain any element is called empty set.  

 A set which consists of a definite number of elements is called finite set,  

otherwise, the set is called infinite set.  

 Two sets A and B are said to be equal if they have exactly the same 

elements.  

 A set A is said to be subset of a set B, if every element of A is also an 

element  

of B. Intervals are subsets of R.  

 A power set of a set A is collection of all subsets of A. It is denoted by P(A). 

 

 

Points to Remember: 
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Questions & Answers: 

1 Mark Each: 

 

1. Find the solution set of the equation x ^2 + x – 2 = 0 in roster form.  

Solution: The given equation can be written as  

(x – 1) (x + 2) = 0, i. e., x = 1, – 2  

Thus, the solution set of the given equation can be written in roster form as {1, 

– 2}.  

 

2. Write the set {1/2,2/3,3/4,4/5,5/6,6/7} in the set-builder form. 

Solution: Here, we have each member in the given set has the numerator one 

less than the denominator. Also, the numerator begin from 1 and do not 

exceed 6. Hence, in the set-builder form the given set is 

{x : x = n/(n+1), where is a natural number and 1 ≤ n ≤ 6.} 

 

3. Determine either the sets are finite or infinite.  

A= {1, 2, 3 ...}  

Solution: {1, 2, 3 …} is an infinite set because it has infinite number of natural 

numbers 

 

3. Determine either the sets are Equal or not. 

A = {x: x is a letter in the word FOLLOW}; B = {y: y is a letter in the word 

WOLF} 

Solution: A = {x: x is a letter in the word FOLLOW} = {F, O, L, W}  

B = {y: y is a letter in the word WOLF} = {W, O, L, F}  

Order in which the elements of a set which are listed is not significant.  

Therefore, A = B.  

 

4. Examine whether the statement is true or false:  

 {a, e} ⊂ {x: x is a vowel in the English alphabet} 
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Solution: 

True.  

We know that a, e are two vowels of the English alphabet.  

 

5. Write down all the subsets of the following sets:  

 {1, 2, 3} 

Solution: 

Subsets of {1, 2, 3} are  

Φ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}.  

 

6. State if the given set is finite or infinite  

Solution: A= { x : x ∈ Z and x x 8 } 2 − 9 + 1 = 0  

Solution: Given condition, x x 8 2 − 9 + 1 = 0  

Solve for x here,  

x x x 8 2 − 3 − 6 + 1 = 0  

(x − 3)(x − 6) = 0  

x = 3, 6  

 

7. State with reasons which of the following sets is an/ are empty set.  

(i) Set of even prime numbers greater than 2  

Solution: (i) Since 2 is the only even prime number, therefore it is an empty or  

null set.  

 

8. State whether the given pairs of sets are equal or not.  

(i) A={ -7, 5 } B={ x : x ∈ Z and x 2x 5 } 

Solution : (i) Given A={-7,5}  

For set B , we have solution of x 2x 5 as 7 and 5, 2 − 1 + 3 = 0  

Therefore we have B={7,5} ⇒A =/ B  
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9. Write down all the subsets and power set of set A={1, 2, 3}  

Solution: n(A) = 3 , total number of subsets = 23 = 8  

Subsets of A={1},{ 2},{ 3}, {1, 2},{1,3},{2,3}, {1, 2, 3}, Φ Powerset of A, 

P(A)={ {1},{ 2},{ 3}, {1, 2},{1,3},{2,3}, {1, 2, 3}, Φ }  

 

 

10. How many elements will a power set of A has, if A= Φ  

Solution: We know that,  

If n(A)=m then,  

n{P(A)}= 2m  

Since A is a null set, n(A)=0 ⇒ n{P(A)}= 20 = 1  

Powerset of will have 1 element that is Φ . 
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2 Marks Each: 

 

1. How many elements has P (A), if A = Φ?  

Solution:  

If A is a set with m elements  

n (A) = m then n [P (A)] = 2m  

If A = Φ we get n (A) = 0  

n [P(A)] = 20 = 1  

Therefore, P (A) has one element. 

 

2. Write the following as intervals:  

(i) {x: x ∈ R, 0 ≤ x < 7}  

(ii) {x: x ∈ R, 3 ≤ x  

Solution:  

(i) {x: x ∈ R, 0 ≤ x < 7} = [0, 7)  

(ii) {x: x ∈ R, 3 ≤ x ≤ 4} = [3, 4] 

 

 

3. Write the following intervals in set-builder form:  

(i) (6, 12]  

(ii) [–23, 5)  

Solution:  

(i) (6, 12] ={x: x ∈ R, 6 < x ≤ 12}  

(ii) [–23, 5) = {x: x ∈ R, –23 ≤ x  

 

4. What universal set (s) would you propose for each of the following:  

(i) The set of right triangles  

(ii) The set of isosceles triangles  

Solution:  

(i) Among the set of right triangles, the universal set is the set of triangles or 

the set of polygons. 
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(ii) Among the set of isosceles triangles, the universal set is the set of triangles 

or the set of polygons or the set of  

two-dimensional figures.  

 

5. Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?  

Solution: 

It is given that  

A = {a, b} and B = {a, b, c}  

Yes, A ⊂ B 

So the union of the pairs of set can be written as 

A∪ B = {a, b, c} = B  
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3 Marks Each: 

 

1. If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find  

(i) A ∪ B ∪ C  

(ii) A ∪ B ∪ D  

(iii) B ∪ C ∪ D 

Solution: 

(i) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}  

(ii) A ∪ B ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  

(iii) B ∪ C ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}  

 

2. Which of the following pairs of sets are disjoint.  

(i) {1, 2, 3, 4} and {x: x is a natural number and 4 ≤ x ≤ 6}  

(ii) {a, e, i, o, u}and {c, d, e, f}  

(iii) {x: x is an even integer} and {x: x is an odd integer}  

Solution:  

(i) {1, 2, 3, 4}  

{x: x is a natural number and 4 ≤ x ≤ 6} = {4, 5, 6}  

So we get  

{1, 2, 3, 4} ∩ {4, 5, 6} = {4}  

Hence, this pair of sets is not disjoint.  

(ii) {a, e, i, o, u} ∩ (c, d, e, f} = {e}  

Hence, {a, e, i, o, u} and (c, d, e, f} are not disjoint.  

(iii) {x: x is an even integer} ∩ {x: x is an odd integer} = Φ  

 

3. If X and Y are two sets such that X ∪Y has 18 elements, X has 8 elements 

and Y has 15 elements; how many elements does X ∩ Y have?  

Solution:  

Here we have, 

n (X U Y) = 18  

n (X) = 8  
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n (Y) = 15  

We can write it as  

n (X U Y) = n (X) + n (Y) – n (X ∩ Y)  

Substituting the values  

18 = 8 + 15 - n (X ∩ Y)  

By further calculation  

n (X ∩ Y) = 23 – 18 = 5  

So we get  

n (X ∩ Y) = 5 

 

4. Let A={ a, b, c, d} , B={ a, b,c } and C={b,d}. Find all sets D which satisfies  

the given conditions.  

(i) D⊂ B and D⊄C  

(ii) D ⊂ B, D = / B and D⊄C  

(iii) D ⊂ A, D ⊂ B and D ⊂ C  

Solution: (i) First we write all the subsets of B  

P(B)={ {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}, Φ }  

Similarly all the subsets of C,  

P(C) ={ {b}, {d}, {b,d}, Φ }  

Now P is a subset of B but not C  

⇒ D ∈ P(B) and D ∈/P(C)  

⇒D = {a},{c}, {a,c}, {a,b},{b,c}, {a,b,c}  

(ii) D is a subset of B but notC and also it not equal to B  

⇒ D ∈ P(B) , D =/ B and D ∈/P(C)⇒D = {a}, {c},{a,c}, {a,b},{b,c}  

(iii) Here first write all the subset of A  

P(A) = { {a}, {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c},  

{b,c,d}, {a,c,d}, {a,b,d},{a,b,c,d}, Φ } D is subset of A, B and C  

⇒ D ∈ P(A) , D ∈ P(B) and D ∈ P(C)  
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