

bank- Po/Clerk

IBPS, SBI, RBI, IBPS-RRB, LIC, NABARD \& ALL OTHER BANKING \&INSURANCE EXAMS

Reasoning

Contents

1. Inequalities 01-17
2. Alphabet test 18-29
3. Coding - Decoding 30-37
4. Blood Relation 38-48
5. Distance \& Direction test 49-67
6. Number Series
7. Ranking \& Order8.Syllogism95-121
8. Seating Arrangement 122-163
9. Input - Output 164-173
10. Binary Coding 174-179
11. Data Sufficiency 180-189
12. Statement \& Assumption 190-196
13. Statement \& Argument 197-212
14. Cause \& Effect 213-218
15. Decision Making 219-226
16. Puzzle test 227-254

INEQUALITIES
Fundamental Sign
$>$ greater than
$<$ less than
= equal

$$
\begin{aligned}
& A \neq B \\
& \triangle A<B
\end{aligned}
$$

I Normal Inequality
Statement: $A>B, D \leq C, B \geq C$
Conclusion: I. $D<A$

$$
\text { II. } B>D
$$

\rightarrow I true, II false
II. Codded Inequality
$A \% B \rightarrow A$ is greater than B
$A \$ B \rightarrow A$ is not greater than B.

$$
A \% B \Rightarrow A>B, A \not B \Rightarrow A \leq B
$$

Statement: $P \% Q, Q \$ R, R \$ S$
Condusion: I. $P \% S$ II. $S \not \$ R$
Sol. $\Rightarrow P>Q, Q \leq R, R \leq S$
$I \cdot P>Q, Q \$ R, R \$ S$
II $S \leq R$
I True, II False
III Filler Based Inequality

- Half fillers - fill fillers

2. If $A>C, E \geq C$ are true, than, A ? B ? C? D? E.

Positive Coding language

* Forward Codded
$A \% B \rightarrow A$ is greater than B.
$A \Delta B \rightarrow A$ is smaller than B
$A \nsubseteq B \rightarrow A$ is greater than or equant to B.
$A \subset B \rightarrow A$ is smaller than ar equal to B.
$A @ B \rightarrow A$ is equal to B.
- $A \% B \rightarrow A>B \rightarrow \%,>$
- $A \Delta B \rightarrow A<B \rightarrow \Delta, \angle$
- $A \$ B \rightarrow A \geq B \rightarrow \$, \geq$
- $A \subseteq B \rightarrow A \subseteq B \rightarrow \subset, \leq$
- A @ $B \rightarrow A \leq B \rightarrow \Theta, \leq$
* Backward Coded
$A \% B \rightarrow B$ is greater than A
$A * B \rightarrow B$ is greater than or equal to A
$A \in B \rightarrow B$ is smaller than A
$A \neq B \rightarrow B$ is smaller than or equal to A
$A \subset B \rightarrow B$ is equal to A.
- $A \% B \rightarrow B>A \rightarrow \%, C$
- $A * B \rightarrow B \geq A \rightarrow *, \leq$
- $A \in B \rightarrow B<A \rightarrow €,>$
- $A \neq B \rightarrow B \leq A \rightarrow \neq, \geq$
- $A \odot B \rightarrow B=A \rightarrow$, \leq

Negative Coding language

* $A \# B \rightarrow A$ is not greater than B
$A \% B \rightarrow A$ is not Smaller than B.
$A * B \rightarrow A$ is neighter greater hor equal to B.
$A \Delta B \rightarrow A$ is neighter smaller hor equal to B.
$A \in B \rightarrow A$ is neighter greater nor Smaller than B
A O $B \rightarrow A$ is not equal to B
- $A \ngtr B \rightarrow A \leq B \rightarrow \#, \leq$
- $A \notin B \rightarrow A \geq B \rightarrow \%, \geq$
- $A * B \rightarrow A \neq B \rightarrow A<B \rightarrow *,<$
- $A \Delta B \rightarrow A \notin B \rightarrow A>B \rightarrow \Delta,>$
- $A \in B \rightarrow A>\not \subset B \rightarrow A=B \rightarrow €,=$
- A e $B \rightarrow A \neq B \rightarrow$

Backward Coded
$A \# B \rightarrow B$ is not greater than A
$A \% B \rightarrow B$ is not smaller than A.
$A * B \rightarrow B$ is neighter greater than nor equal to A.
$A \triangle B \rightarrow B$ is neighter smaller than nor equal to A.
$A \notin B \rightarrow B$ is neighter greater hor smaller than A.
A A $B \rightarrow B$ is not equal to A.

$$
\begin{aligned}
& A \# B \rightarrow B \ngtr A \rightarrow B \leq A \rightarrow \neq, \geq \\
& A \% B \rightarrow B \notin A \rightarrow B \geq A \rightarrow \%, \leq \\
& A \not B B \rightarrow B \notin A \rightarrow B>A \rightarrow *,> \\
& A \Delta B \rightarrow B \notin A \rightarrow B>A \rightarrow \Delta,< \\
& A \not B \rightarrow B \not \subset A \rightarrow B=A t,= \\
& A \varrho B \rightarrow A \neq B
\end{aligned}
$$

- Single $\operatorname{Sign} \longrightarrow,<$
- Double Sigh $\longrightarrow \geq, \leq$
- Equal Sign - =
- $\vec{A}>B_{\text {Close }}^{\text {OPe }}$
- $\overrightarrow{A<B}_{\text {open }}$
$\xrightarrow{\overleftrightarrow{A \leq B}}$ Olen Close
- $\widehat{A=B}$ open
- $\overrightarrow{A \geq B}$ OPen
I. Normal Inequality
* Statement: $A>B, D \leq C, B \geq C, D<E$

Conclusion :

- I. $D<A$ -
II. $B>D \times$
-I. $A \geq D x$
III $D \leq B V$

I true, II false

I false, II true

- EA> $A>E X$ II: $B \geq E X$
bath I \& II are false
* Statement: $P \geq Q \geq R<S, T<R \geq M$

Conclusion: I. $T<P$
All I, II, III
II. $M \leq \theta$
are true
III. $S>M$

* Statement: $J<K=T, A \geq B \geq C$

Conclusion: I. M $\geq J \times$ All I, II \& III are

$$
\text { II. } C \geq A X
$$

True

$$
\text { III. } A \geq T x
$$

* Statement: $A \geq Q \geq T, M<T, A=P, M>N \geq Z$

Conclusion: $I . P>Z \checkmark$ Bath $I \&$ II are II. $N<H \vee$ false.

* Statement: $R>S<Q, Q=T, Z<T, Q \geq M$

Conclusion: I. $S<T \vee \quad I$, III are true
II. $R>M X$ II is wrong
III. $T=Q \vee$ I

Fill in the blanks.

- $A>B>C, A \rho C \quad A>C$
- $P \leqslant Q<R, R ? R \quad R>P$
- $M \geq N \geq 0, M ? 0 \quad M \geq 0$
- $x \leqslant y=z, x \dot{Z} \quad x \leqslant z$
- $A>B \geq C=D=E, A$? $D, B=? E, C ? \in, A>0, B \geqslant E, C=E$
- $A>B<C \quad A ? C$ Not Defined
- $J \leq I>K$ J? K Nat Defined
- $W \geq x>y, z>A$
ω ? A Not Defined
- $P \geq Q>R, R>S \quad P$?T Not Defined
- $S>T \geq U<v \geq w>z \quad S$? 2 Nat Defined

Condition of "either - or"
I. (a) Same of Two Conclusion have
(a) Same Elements.
(b) Contain all there Signs $(>,<,=)$
(c) Condition of not Defined

* Statement : $A=B \geq C, C \geq D,>E L F$

Conclusion:

- I. $A \geq F$ Same Element \checkmark not Defined
II. $A<F$ All Sigh

Either I or II follow

- I. $A \geq F$ II. $F>A$
-I. $A=F$ II. $A \neq F$
-I. $A \geq E X$
II. $A<E X$ Both I \& II are Wrong
- I. $A>E \sqrt{ } \quad I$ is true, II is false II. $A \leq E X$
- I. $A \geq F x$
II. $A<E X$
-I: $A>F$ II. $B \leq f$
- I. $A>T$ II. $A \leq T$

Either I or II follows.
Either I or II follows.
($E \neq F)$
Both I \& II are Wrong

$$
(A=B)
$$

Either I or II follows
Either I ar II follows

* Statement: $I>A \geq S<M, S>G<T$

Conclusion: I. I>T

$$
\mathbb{I} \cdot I \leq T
$$

\rightarrow Either I or II follows.

* Statement: $J \geq K<M, K \geq N<G$

Conclusion: $I . M \geq G$
II. $N \leq J x$

$$
\text { III } \cdot M<G
$$

\rightarrow II is true $\&$ Either I or II follow

* Statement: $x<G>y, y \geq M<T$

Conclusion: $I . ~ X \geq M X$

$$
\text { II } \cdot x \leq M x
$$

(शेसे Case मे कभी भी Either or की Condition नही बनेगी)
\rightarrow Both I \& II are Wrong
\rightarrow Neither I hor II follows.

* Statement: $M<N<T, T>K, P>G$

Conclusion: I. $N \geqslant G$

$$
\text { II. } N<G
$$

\rightarrow Either I or II follows.

* Statement: $S \geq G>U<M, U \geq T$

Condusion: $I . S \geq T x$

$$
\mathbb{I} \cdot T<S V
$$

\rightarrow I is Wrong, II is true

* Statement : $P \geq Q \geq R<S, T<R<M$

Condusion: $I \cdot P \geq T \times$
II. $P<T x$
\rightarrow Both I \& II are Wrong

* Statement: $P \geq Q \geq R<S, T>R<M$
conclusion: I. $P>T$

$$
\text { II } \cdot P<T
$$

$$
\text { III } \cdot P=T
$$

\rightarrow Either I or III or III is true
II. (a) Element must be Same
(b) One Conclusion Contain Single Sign $(>, c)$ and other Contain \Rightarrow Sign .
(C) Double Sign relation is Satisfied

* Statement: $A \geq B$

$$
I \cdot A=B
$$

Conclusion: I. $A>B$ or II. $A<B$

$$
\text { II. } A=B
$$

* Statement : $A=B \geq C, C \geq 0>E<F$

Conclusion: I, $A>D$

$$
\text { II } \cdot A=D
$$

\rightarrow Either I or II follows,

$$
I \cdot A=D
$$

$$
\text { II. } D<A
$$

\rightarrow Either I or II follows

$$
\begin{aligned}
& \text { I. } A \geq D \\
& \text { II } \cdot A=D x
\end{aligned}
$$

\rightarrow I is true, II is false

$$
\begin{aligned}
& \text { I. } A=D \times \\
& \text { II. } D>A \times
\end{aligned}
$$

\rightarrow Both I \& II are Wrong

$$
\begin{aligned}
& \text { I. } A=E X \\
& \text { II } \cdot E \angle A \backsim
\end{aligned}
$$

$\rightarrow I$ is false, II is true

$$
\begin{aligned}
& \text { I. } A>F x \\
& \text { II. } A=F x
\end{aligned}
$$

\rightarrow Both I \& II are Wrong
\rightarrow Neither I nor II follows.

$$
\begin{aligned}
& \text { I. } A=D \\
& \text { II } \cdot B>D
\end{aligned}
$$

\rightarrow Either I or II follows.

* Statement: $P>T \geq T, M \leq L>N$

Condusion: $I \cdot T=M$
II. T $>$ M
III. $N<P$
\rightarrow Either I or II follows \& III is true

* Statement: $S=G \leq M<N, T \geq M \leq P$

Contusion: I. $N>P \times$

$$
\text { II } \cdot S=T
$$

$$
\text { III } . T>S
$$

\rightarrow I is false and either II or III follows.

* Statement : $A \subset B \geq G, G \geq L=M, P \leq M$

Conclusion: $I \cdot B=M$

$$
\begin{aligned}
& \text { II. } G>P x \\
& \text { III. } B>M
\end{aligned}
$$

\rightarrow II is wrong, Ether I ar In follows

* Statement : $W \geq x, x<y, z \geq y$

Conclusion: I, $\omega=Z \times x$

$$
\text { II. } \cdot w>2 \times x
$$

\rightarrow Both I \& II are Wrong

* Statement: $E>F=G, G \geq H \geq Q$

Conclusion: $I, E=Q \times$

$$
\begin{aligned}
& \text { II, } Q \leq G 乙 \\
& \text { III } \cdot E>Q \smile
\end{aligned}
$$

\rightarrow II is Wrong, II \& III both are three true.
III (a) Element must be Same
(b) Both Sign are Present (open\& close)
(c) Relation is not equal

* Statement: $A>B \leq C=D \neq E<G$
conclusion: $\frac{I}{\text { II }} \cdot C \subset E$
\rightarrow Either I or II follows
I. $C>E$
II. $D<E$
\rightarrow Either I or II follows
* Statement : $A \geq B \geq C=D<E=F \neq G$

Conclusion $I=A \geq E$

$$
\text { II. } A<E
$$

\rightarrow Either I ar II follows

$$
\begin{aligned}
& \text { I. } B>D \\
& \text { II. } B=D
\end{aligned}
$$

\rightarrow Either I ar II follows

$$
I_{+} \in>G
$$

$$
\mathbb{T} \cdot E<G
$$

\rightarrow Either I or II follows.
Codded Inequality
(D) irection:
(i) $-P * Q=P$ is not greater than Q
(ii) $-P+Q=P$ is not smaller than Q
(iii) $-P \# Q=P$ is neither greater nor equal to Q
(iv) $-P \% Q=P$ is neither smaller nor equal to Q
(v) $-P \not \& Q=P$ is neither greater nor Smaller than Q.

* Statement: $A * B, B \# C, C \$ D$

Conclusion : I. $A \neq 0$

$$
\mathbb{I} \cdot B * D
$$

* Statement : $P * Q, R+Q, S \$ R$

Conclusion: I, $P \$ S$

$$
\mathbb{I} \cdot P \# S
$$

Filler based Inequality:
Q. Which of two following Conclusion is definity false?

Statement : $A \geq B \geq C, C \geq D>E$
Conclusion: $I \cdot A>D$

$$
\text { II. } B<D
$$

$$
A \geq D>A>D \quad \left\lvert\, \begin{aligned}
& \rightarrow A \geq D \rightarrow B>D \\
& >A=D
\end{aligned}\right.
$$

\Rightarrow Only II is definity Wrong.

* रेसे questions मे पहले relation बनाना है, फिर options में Conclusion check करना है।
* Relation definitly Wrong

$A>B$	$A<B$	$A \geq B$	$A \leq B$	$A=B$	$A \neq B$	Not Defined blu
(j) $A<B$	$A>B$	$A<B$	$A>B$	$A>B$	$A=B$	$A \in B$
	$A<B$		None			
(ii) $A=B$	$A=B$					

(A) Half fillers

* Expression $A>C, E \geq C$ are true, than

$$
\begin{aligned}
& A \geq B ? C=D ? E \\
\rightarrow & A \geq B>C=D \leq E .
\end{aligned}
$$

* Expression $A \geq C, E \geq C$ are true, than

$$
A \geq B \cdot ? C=D ? E
$$

$$
\begin{array}{ll}
(A)=, C & (B) \geq, \subseteq \\
(D)=>,> & (E) \geq, \subseteq
\end{array}
$$

$$
\text { (C) }>, \leq
$$

Sol $A \geq B(\geq, \Rightarrow) C=D \leq E$

* If $B \leq E \quad \& A \geq C$, than $A \geq B-C=D _E$

$$
\rightarrow A \geq B(=\geq) C=D \leq E
$$

Statement : $A \geq B \geq C, C \geq D>E$
Conclusion: $I \cdot A>D$

$$
\text { II. } B<D
$$

$$
A \geq D \underset{\rightarrow A>D}{\rightarrow A=D} \quad \mid B \geq D \rightarrow B>D
$$

\Rightarrow Only II is definity Wrong.

* शेसे questions मे पहले relation बनाना है, फिर options में Conclusion check करना है।
* Relation definitly Wrong

$A>B$	$A<B$	$A \geq B$	$A \leq B$	$A=B$	$A \neq B$	Not Defined blu
(j) $A<B$ $A>B$ (ii) $A=B$ $A=B$ $A<B$	$A>B$	$A>B$	$A=B$	$A \in B$		
			$A<B$		None	

(A) Half fillers

* Expression $A>C, E \geq C$ are true, than

$$
\begin{aligned}
& A \geq B ? C=D ? E \\
\rightarrow & A \geq B>C=D \leq E .
\end{aligned}
$$

* Expression $A \geq C, E \geq C$ are true, than

$$
A \geq B \cdot ? C=D ? E
$$

$(A)=, c$
(B) \geq, \subseteq
(C) $>, \leq$
(D) $=\ggg$
(E) \geq, \subseteq

Sol $A \geq B(\geq, \Rightarrow C=D \leq E$

* If $B \leq E \& A \geq C$, than $A \geq B-C=D-E$

$$
\rightarrow A \geq B(=\geq) C=D \leq E
$$

practice questions

Directions (1-5): in these questions, relationship between different elements is shou in the statements. The statements are folloued by conclusions study the conclusions based on the given statements and select the appropriate ansuer:
(A) Both conclusion : and "1 are true
(B) Either conclusion ior il is true
(C) only conclusion is true
(D) Neither conclusion 1 nor 11 is true
(E) only conclusion 11 is true
Q. 1 statements: $z=A \geq C\langle M, R\rangle z$
conclusions:
.
R>C
11. $A<M$
sol: (A)
Q. 2 statements: $N>A \geq C, P=N, P \leq L$ conclusions: :. $N>C$
i1. $L>A$
sol: (E)
Q. 3 statements: $S \leq K\langle M\rangle W \geq Z$
conclusions:
i. $\quad W<K$
11. $z=s$
sol: (D)
Q. 4 statements: $S \leq L<R, S \geq N, P=N$ conclusions: I. $R \leq S$ I. $R<N$
sol: (A)
Q. 5 statements: $L>M \geq P \leq S, Q<P, M<K$
conclusions:
b. $K=L$
11. $M \geq Q$
sol: (D)

Directions (6-10): in these questions, a relation, relationships, between different elements is shoun in the statements. These statements are folloued by two conclusions.
(A) only conclusion ifollou.
(B) only conclusion "follous.
(C) Either conclusion 1 or 1 follous.
(D) Neither conclusion i nor "follous.
(E) Both conclusion 1 and 1 follous.
Q. 6 statements: $W \geq D<M<P<A=F$
conclusions:
i. $\quad F>D$
11. $P<W$
sol: (A)
Q. 7 statements: $N\rangle D \geq F\rangle J ; E<L \leq G<S\langle P\langle F ; G\rangle \mu$ conclusions: $1 . \quad W<J \quad$ II. $J \leq W$
sol: (c)
Q. 8 statements: $V<E=D=W \geq L ; F \geq S=D<K ; L \geq R=H \geq B$ condusions:

1. $B<S$
2. $B=S$
sol: (c)
Q. 9 statements condusions:
$A \geq B ; C=D, E>F, F \geq D, B>C$
i. $\quad D>F$
i1. $C \geq F$
sol: (D)

sol: (B)

Directions (11-15): in the follouing questions, the symbols \%, @, \#, \$ and * are used with the follouing meaning as illustrated belou:
' P \# Q' means ' P is neither smaller than nor equal to Q.' ' P * Q ' means ' P is neither greater than nor equal to Q.' ' P \$ Q ' means ' P is not greater than Q.' ' $P \% Q$ ' means ' P is not smaller then Q.'
' P @ Q' means ' P is neither smaller than not greater than Q.'
in each of the following questions, mask ansuer. According to above symbols and their meaning.
Q. 11 which of the following does not make A \# C and D \$ F definitely not true?
(A) A\%B\#C@D\$E\$F
(B) A \# B @ C $\$ \mathrm{D} \# \mathrm{E}$ @ F
(C) A\%B\#C@D\$E*F
(D) $\mathrm{A} \% \mathrm{~B}$ \# $\mathrm{C} \# \mathrm{D}$ @ E \$F
(E) None of these
sol: (C)
Q. 12 which of the following makes $C \$ E$ or $B \% E$ definitely true?
(A) A*B\$C@D\%E\#F
(C) A \# B \# C \% D \% E * F
(E) None of these
sol: (B)
Q. 13 which of the following makes $A * C$ and $E \# B$ definitely true?
(A) A*B\$C@D\%E\#F
(B) A*D\$B*C@E\#F
(C) A*B\#C\%D*E\$F
(E) None of these
sol: (B)
Q. 14 what will come in place of blank in following belou such that $\mathrm{B} * \mathrm{E}$ and F \# B are definitely true? A@B\$C_D@E*F\$G
(A) @
(B) *
(c) \#
(D) $\$$
(E) None of these
sol: (B)
Q. 15 which of the following makes $F \# D \$ B$ definitely true?
(A) A@B\$C*D\#E*F
(B) A*B@C\%D*E*F
(C) $\mathrm{A} \% \mathrm{~B} * \mathrm{C} \$ \mathrm{D} @ \mathrm{E} * \mathrm{~F}$
(D) A \# B \% C @ D*E*F
sol: (D)

Directions (16-20): in the follouing questions, the symbols +, $x,=$, and -are used with the following meaning.

1. $P+Q$ means P is greater than Q.
2. $P \propto Q$ means P is greater than or equal to Q.
3. $P=Q$ means P is equal to Q.
4. $P \div Q$ means P is smaller than Q.
5. $P-Q$ means P is either smaller than or equal to Q. Nou in each of the following questions assuming the given statements to be true, find which of the two conclusions. 1 and 1 given belou them is are true find which give answer.
(A) If only conclusion is true.
(B) If only conclusion 11 is true.
(C) If either 1 or 11 is true.
(D) If neither inor 11 is true.
(E) If both 1 and 11 are true.
Q. 16 statements: conclusion: $u+v, w-y, \quad Y+u$ (D)
sol: (D)
Q. 17 statements: $B \div A, D x E, E+A$
Q. 17 statements:
conclusion:
l. $D+A$
6. $B \div E$
sol: (E)
Q. 18 statements:
$w+u$
7. $w \div v$ $S \propto Q R+T, R-S$ conclusion:
8. $S+T$
9. $Q=T$
sol: (A)
Q. 19 statements: $M \div N, P \propto Q, P+N$ conclusion: l. $\quad N+Q$
10. $N-Q$
sol: (c)
Q. 20 statements: $\quad G-H, K x L, L-G$
conclusion:
l. $G \div K$
i. $L-H$
sol: (B)
Q. 21 what is in the place of question mark (?) in the given expression does the expression. $K\langle H$ and $V\rangle K$ is definitely true?

$$
V=O \geq L ? K ; O \leq H
$$

(A) $>$
(B) $=$
(c) $<.0 r \leq$
(D) \geq
(E)None of these
sol: (A)
Q. 22 which of the following order of letters in the blanks makes the expression $D>E$ is definitely true?
-_ \qquad < \qquad $>$ \qquad
(A)
B, C, D, E, A
(B) A, B, C, E, D
(C) D, B, A, C, E
(D) E, C, A, B, D
(E) C, A, D, B, E
sol: (E)
Q. 23 which of the following expressions will be true if the expression?
$' Z<Y \geq W=V$ is definitely true?
(A) $V>Y$
(B) $z<w$
(c) $\vee \geq 2$
(D) $W \leq Z$
(D)None of true
sol: (E)

Directions (24-28): in the following questions, the symbol @,
0, \$, \% and * are uses with the following meaning as illustrated below.
' P © Q ' means ' P is not smaller than Q '
' $P \%$ Q' means ' P is not greater than Q '
' P * Q' means ' P is neither smaller than nor equal to Q '
' P @ Q' means ' P is neither greater than not smaller than Q '
' $P \$ Q$ ' means ' P is neither greater than nor equal to Q '

Nou in each of the following questions assuming the given statements to be true, find which of the conclusions i 11 and III given belou then is are definitely true?
Q. 24 statements: F \% T, T @ J, J*W

(A) only is true (B) only 11 is true (C)only m is true
(B) only either :or 11 is true
(E) only either ior 11 and 11 are true
sol: (E)
Q. 25 statements: $\quad R * D, D \odot K, K \$ M$
conclusion: i. $M * R \quad \mathrm{M}$. $\mathrm{K} \$ \mathrm{R} \quad \mathrm{m} . \mathrm{D} * \mathrm{M}$
(A) None is true (B) only is true
(B) only 11 is true
(D) only $I I$ is true
(E) only "1 and "are true
sol: (C)
Q. 26 statements: Z ○ F, F $\$ \mathrm{M}, \mathrm{M} \% \mathrm{~K}$
conclusion i. $K * F \quad$ II. $Z * M \quad$ il. $K * Z$
(A) only is true (B) only 11 is true
(C) only ilis true (D) only 11 and 11 are true (E) None of the above
sol: (A)
Q. 27 statements: H @ B, B © R, A\$R
conclusion: i. B*A $\quad \mathrm{A} \% \mathrm{R}$ H $\mathrm{m} . \mathrm{A} \$ \mathrm{H}$
(A) anly iand llare true
(B)only 1 and illare true
(C) only 11 and 11 are true
(D) All i, 11 and illare true
(E) None of above
sol: (D)
Q. 28 statements: $M \$ J, J * T, K$ © T
conclusion: i. $K * J \quad 1 . \quad M \$ T \quad 11 . M \$ K$
(A) None is true
(B) only is true
(B) only lis true
(D) only li is true
only 11 and 11 are true
sol: (A)

